scispace - formally typeset
Search or ask a question
Topic

Pipe flow

About: Pipe flow is a research topic. Over the lifetime, 13826 publications have been published within this topic receiving 351605 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a simulation of turbulent heat transfer in a channel flow has been carried out in order to investigate the characteristics of surface heat-flux fluctuations, and the effect of large-scale structures extends even to the surface heatfluctuations, and increases with increasing Reynolds number.

301 citations

Journal ArticleDOI
John Kim1
TL;DR: In this article, the authors analyzed a database obtained from a direct numerical simulation of a turbulent channel flow and presented detailed statistics associated with the pressure fluctuations, including probability density distributions, power spectra, and two-point correlations.
Abstract: Pressure fluctuations in a turbulent channel flow are investigated by analyzing a database obtained from a direct numerical simulation. Detailed statistics associated with the pressure fluctuations are presented. Characteristics associated with the rapid (linear) and slow (nonlinear) pressure are discussed. It is found that the slow pressure fluctuations are larger than the rapid pressure fluctuations throughout the channel except very near the wall, where they are about the same magnitude. This is contrary to the common belief that the nonlinear source terms are negligible compared to the linear source terms. Probability density distributions, power spectra, and two-point correlations are examined to reveal the characteristics of the pressure fluctuations. The global dependence of the pressure fluctuations and pressure-strain correlations are also examined by evaluating the integral associated with Green's function representations of them. In the wall region where the pressure-strain terms are large, most contributions to the pressure-strain terms are from the wall region (i.e., local), whereas away from the wall where the pressure-strain terms are small, contributions are global. Structures of instantaneous pressure and pressure gradients at the wall and the corresponding vorticity field are examined.

300 citations

Journal ArticleDOI
TL;DR: In this article, the transmission of sound out of a semi-infinite circular jet pipe in the presence of subsonic flow from the pipe is investigated and a solution satisfying the Kutta condition and causality is found which possesses an instability wave term that dominates within a region of approximately 45° to the downstream jet axis.
Abstract: The transmission of sound out of a semi-infinite circular jet pipe in the presence of subsonic flow from the pipe is investigated. An unstable cylindrical vortex layer attached to the edge of the pipe is considered across which differences in mean subsonic flow, density and temperature are included. A solution satisfying the Kutta condition and causality is found which possesses an instability wave term that dominates within a region of approximately 45° to the downstream jet axis. It is shown that when an exterior flow is imposed the noise level increases upstream whilst the instability wave weakens downstream. The stable part of the solution is shown to agree very well with some recent experimental results.

297 citations

Journal ArticleDOI
TL;DR: In this paper, saddle points in phase space have been found to represent the lowest level in a hierarchy of spatio-temporal periodic flow solutions which may be used to construct a cycle expansion theory of turbulent pipe flows.
Abstract: The problem of understanding the nature of fluid flow through a circular straight pipe remains one of the oldest problems in fluid mechanics. So far no explanation has been substantiated to rationalize the transition process by which the steady unidirectional laminar flow state gives way to a temporally and spatially disordered three-dimensional (turbulent) solution as the flow rate increases. Recently, new travelling wave solutions have been discovered which are saddle points in phase space. These plausibly represent the lowest level in a hierarchy of spatio-temporal periodic flow solutions which may be used to construct a cycle expansion theory of turbulent pipe flows. We summarize this success against the backdrop of past work and discuss its implications for future research.

297 citations

Journal ArticleDOI
TL;DR: In this paper, two distinct unsteady friction models, the Zielke and the Brunone models, are investigated in detail, and the two models are incorporated into the method of characteristics water hammer algorithm.
Abstract: This paper reviews a number of unsteady friction models for transient pipe flow. Two distinct unsteady friction models, the Zielke and the Brunone models, are investigated in detail. The Zielke model, originally developed for transient laminar flow, has been selected to verify its effectiveness for "low Reynolds number" transient turbulent flow. The Brunone model combines local inertia and wall friction unsteadiness. This model is verified using the Vardy's analytically deduced shear decay coefficient C ∗ to predict the Brunone's friction coefficient k rather than use the traditional trial and error method for estimating k. The two unsteady friction models have been incorporated into the method of characteristics water hammer algorithm. Numerical results from the quasi-steady friction model and the Zielke and the Brunone unsteady friction models are compared with results of laboratory measurements for water hammer cases with laminar and low Reynolds number turbulent flows. Conclusions about the range of v...

296 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
95% related
Laminar flow
56K papers, 1.2M citations
92% related
Fluid dynamics
47.9K papers, 1M citations
90% related
Turbulence
112.1K papers, 2.7M citations
89% related
Heat transfer
181.7K papers, 2.9M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202335
202275
2021170
2020177
2019273
2018281