scispace - formally typeset
Search or ask a question
Topic

Pipe flow

About: Pipe flow is a research topic. Over the lifetime, 13826 publications have been published within this topic receiving 351605 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that the acoustic streaming induced by the pure tone, a spinning wave corresponding to the first tangential mode, deforms the base Rankine vortex into a forced vortex, resulting in total temperature separation in the radial direction.
Abstract: The Ranque–Hilsch effect, observed in swirling flow within a single tube, is a spontaneous separation of total temperature, with the colder stream near the tube centreline and the hotter air near its periphery. Despite its simplicity, the mechanism of the Ranque–Hilsch effect has been a matter of long-standing dispute. Here we demonstrate, through analysis and experiment, that the acoustic streaming, induced by orderly disturbances within the swirling flow is, to a substantial degree, a cause of the Ranque–Hilsch effect. The analysis predicts that the streaming induced by the pure tone, a spinning wave corresponding to the first tangential mode, deforms the base Rankine vortex into a forced vortex, resulting in total temperature separation in the radial direction. This is confirmed by experiments, where, in the Ranque–Hilsch tube of uniflow arrangement, we install acoustic suppressors of organ-pipe type, tuned to the discrete frequency of the first tangential mode, attenuate its amplitude, and show that this does indeed reduce the total temperature separation.

215 citations

01 Nov 1976

214 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of porous layer thickness on the rate of heat transfer and pressure drop for a flow in a pipe or a channel fully or partially filled with porous medium.

214 citations

Journal ArticleDOI
TL;DR: In this article, the flow of two immiscible fluids of different viscosities and equal density through a pipe under a pressure gradient was studied, and it was shown that the viscous-dissipation principle does not always hold.
Abstract: We study the flow of two immiscible fluids of different viscosities and equal density through a pipe under a pressure gradient. This problem has a continuum of solutions corresponding to arbitrarily prescribed interface shapes. The question therefore arises as to which of these solutions are stable and thus observable. Experiments have shown a tendency for the thinner fluid to encapsulate the thicker one. This has been ‘explained’ by the viscous-dissipation principle, which postulates that the amount of viscous dissipation is minimized for a given flow rate. For a circular pipe, this predicts a concentric configuration with the more viscous fluid located at the core. A linear stability analysis, which is carried out numerically, shows that while this configuration is stable when the more viscous fluid occupies most of the pipe, it is not stable when there is more of the thin fluid. Therefore the dissipation principle does not always hold, and the volume ratio is a crucial factor.

214 citations

Journal ArticleDOI
TL;DR: In this paper, the pressure within a trapped air pocket in a rapidly filling horizontal pipe is investigated both experimentally and analytically, where the downstream end is either sealed to form a dead end or outfitted with an orifice to study the effects of air leakage on the pressure.
Abstract: The pressure within a trapped air pocket in a rapidly filling horizontal pipe is investigated both experimentally and analytically. The downstream end of the pipe is either sealed to form a dead end or outfitted with an orifice to study the effects of air leakage on the pressure. Three types of pressure oscillation patterns are observed, depending on the size of the orifice. When no air is released or orifice sizes are small, the cushioning effects of the air pocket prevents the water column from impacting on the pipe end and from generating high water hammer pressures. However, the maximum pressure experienced may still be several times the upstream driving pressure. When the orifice size is very large, the air cushioning effect vanishes and the water hammer pressure is dominant. For intermediate orifice sizes, the pressure oscillation pattern consists of both long-period oscillations (while the air pocket persists) followed by short-period pressure oscillations (once water hammer pressures dominate). Air leakage is observed to play a significant role in increasing the magnitude of the observed pressures during rapid filling, resulting in peak pressures up to 15 times the upstream head. An analytical model, capable of calculating the air pocket pressure and the peak pressure when the water column slams into the end of the pipe, is developed and results are compared with those of experiments. The model was successful in determining the amplitude of the peak pressure for the entire orifice range and was able to simulate the pressure oscillation pattern for the case of a negligible water hammer impact effect. Although the model was unable to simulate the pressure oscillation pattern for substantial air release, it was able to predict the type of pressure oscillation behavior and the peak pressure.

213 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
95% related
Laminar flow
56K papers, 1.2M citations
92% related
Fluid dynamics
47.9K papers, 1M citations
90% related
Turbulence
112.1K papers, 2.7M citations
89% related
Heat transfer
181.7K papers, 2.9M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202335
202275
2021170
2020177
2019273
2018281