scispace - formally typeset
Search or ask a question
Topic

Pipe flow

About: Pipe flow is a research topic. Over the lifetime, 13826 publications have been published within this topic receiving 351605 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a developed particle-laden horizontal channel flow (length 6m, height 35mm, the length is about 170 channel heights) is presented using phase-Doppler anemometry for simultaneous determination of air and particle velocity.
Abstract: Detailed measurements in a developed particle-laden horizontal channel flow (length 6 m, height 35 mm, the length is about 170 channel heights) are presented using phase-Doppler anemometry for simultaneous determination of air and particle velocity. The particles were spherical glass beads with mean diameters in the range of 60 µm–1 mm. The conveying velocity could be varied between about 10 m/s and 25 m/s, and the particle mass loading could reach values of about 2 (the mass loading is defined as the ratio of particle to gas phase mass flow rates), depending on particle size. For the first time, the degree of wall roughness could be modified by exchanging the wall plates. The influence of these parameters and the effect of inter-particle collisions on the profiles of particle mean and fluctuating velocities and the normalised concentration in the developed flow were examined. It was shown that wall roughness decreases the particle mean velocity and enhances fluctuating velocities due to irregular wall bouncing and an increase in wall collision frequency, i.e. reduction in mean free path. Thereby, the larger particles are mainly more uniformly distributed across the channel, and gravitational settling is reduced. Both components of the particle velocity fluctuation were reduced with increasing mass loading due to inter-particle collisions and the momentum loss involved. Moreover, the effect of the particles on the air flow and the turbulent fluctuations was studied on the basis of profiles in the developed flow and turbulence spectra determined for the streamwise velocity component. In addition to the effect of particle size and mass loading on turbulence modulation, the influence of wall roughness was analysed. It was clearly shown that increasing wall roughness also results in a stronger turbulence dissipation due to two-way coupling.

190 citations

Journal ArticleDOI
TL;DR: In this paper, the flow induced by a long bubble steadily displacing a liquid confined by two closely located parallel plates or by a cylindrical tube of small diameter is numerically analyzed.
Abstract: The flow induced by a long bubble steadily displacing a liquid confined by two closely located parallel plates or by a cylindrical tube of small diameter is numerically analyzed. The technique employed solves the complete set of governing equations simultaneously. The present analysis encompasses, and also extends, the whole range of Capillary values previously studied with various numerical techniques. The results shown uncover a type of recirculating flow pattern that appears to have been overlooked before. The effects of the inertial forces on the liquid flow rate are also assessed.

190 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the application of a finite-difference calculation procedure to the problem of simulating the three-dimensional, turbulent flow in a strongly curved, open, 180° bend with straight inlet and outlet reaches.
Abstract: The paper describes the application of a finite-difference calculation procedure to the problem of simulating the three-dimensional, turbulent flow in a strongly curved, open, 180° bend with straight inlet and outlet reaches. The configuration can be considered to represent an element of a model meander, and the work presented here forms an important stage in efforts to simulate the flow in successive reverse-curvature bends. No restrictions other than the absence of flow separation and hydraulic jumps are imposed. Full account is taken of non-linear fluid-inertia and of turbulent diffusion terms. Effects of turbulence are represented by an eddy viscosity related to two parameters— the turbulent kinetic energy k and its rate of dissipation ϵ\N— for which related differential transport equations are solved. Predictions are presented for the transverse surface slope and velocity field in a configuration experimentally examined by Rozovskii. Agreement between predictions and experimental data is judged to be satisfactory on all major flow phenomena.

190 citations

Journal ArticleDOI
TL;DR: In this article, the Stokes flow boundary integral equation method was used to simulate the cross-flow migration of rigid particles such as platelets in a red blood cell (RBC) suspension.
Abstract: We simulate the cross-flow migration of rigid particles such as platelets in a red blood cell (RBC) suspension using the Stokes flow boundary integral equation method. Two types of flow environments are investigated: a suspension undergoing a bulk shear motion and a suspension flowing in a microchannel or duct. In a cellular suspension undergoing bulk shear deformation, the cross-flow migration of particles is diffusional. The velocity fluctuations in the suspension, which are the root cause of particle migration, are analyzed in detail, including their magnitude, the autocorrelation of Lagrangian tracer points and particles, and the associated integral time scales. The orientation and morphology of red blood cells vary with the shear rate, and these in turn cause the dimensionless particle diffusivity to vary non-monotonically with the flow capillary number. By simulating RBCs and platelets flowing in a microchannel of 34 μm height, we demonstrate that the velocity fluctuations in the core cellular flow ...

188 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
95% related
Laminar flow
56K papers, 1.2M citations
92% related
Fluid dynamics
47.9K papers, 1M citations
90% related
Turbulence
112.1K papers, 2.7M citations
89% related
Heat transfer
181.7K papers, 2.9M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202335
202275
2021170
2020177
2019273
2018281