scispace - formally typeset
Search or ask a question
Topic

Pipe flow

About: Pipe flow is a research topic. Over the lifetime, 13826 publications have been published within this topic receiving 351605 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The discovery of periodic solutions which just like intermittent turbulence are spatially localized and it is shown that turbulent transients arise from one such solution branch.
Abstract: Although the equations governing fluid flow are well known, there are no analytical expressions that describe the complexity of turbulent motion. A recent proposition is that in analogy to low dimensional chaotic systems, turbulence is organized around unstable solutions of the governing equations which provide the building blocks of the disordered dynamics. We report the discovery of periodic solutions which just like intermittent turbulence are spatially localized and show that turbulent transients arise from one such solution branch.

147 citations

Journal ArticleDOI
TL;DR: The experimental results of the quantities of separated liquid deposited on the wall of a rectangular channel from the turbulent air-water dispersed-annular flow are presented in this article, where the expression for the calculation of the liquid flow rate moving a film is proposed.

147 citations

Journal ArticleDOI
TL;DR: The creeping flow of a dilute (0.025 wt%) monodisperse polystyrene/polystyrene Boger fluid through a 4:1:4 axisymmetric contraction/expansion is experimentally observed for a wide range of Deborah numbers as mentioned in this paper.
Abstract: The creeping flow of a dilute (0.025 wt%) monodisperse polystyrene/polystyrene Boger fluid through a 4:1:4 axisymmetric contraction/expansion is experimentally observed for a wide range of Deborah numbers. Pressure drop measurements across the orifice plate show a large extra pressure drop that increases monotonically with Deborah number above the value observed for a similar Newtonian fluid at the same flow rate. This enhancement in the dimensionless pressure drop is not associated with the onset of a flow instability, yet it is not predicted by existing steady-state or transient numerical computations with simple dumbbell models. It is conjectured that this extra pressure drop is the result of an additional dissipative contribution to the polymeric stress arising from a stress-conformation hysteresis in the strong non-homogeneous extensional flow near the contraction plane. Such a hysteresis has been independently measured and computed in recent studies of homogeneous transient uniaxial stretching of PS/PS Boger fluids. Flow visualization and velocity field measurements using digital particle image velocimetry (DPIV) show large upstream growth of the corner vortex with increasing Deborah number. At large Deborah numbers, the onset of an elastic instability is observed, first locally as small amplitude fluctuations in the pressure measurements, and then globally as an azimuthal precessing of the upstream corner vortex accompanied by periodic oscillations in the pressure drop across the orifice.

147 citations

Journal ArticleDOI
TL;DR: In this paper, a large-scale finite element formulation of 3D, unsteady incompressible flows, including those involving fluid-structure interactions, is presented, with time-varying spatial domains based on the deforming spatial domaidstabilized spacetime (DSD/SST) formulation.
Abstract: SUMMARY Massively parallel finite element computations of 3D, unsteady incompressible flows, including those involving fluid-structure interactions, are presented. The computations with time-varying spatial domains are based on the deforming spatial domaidstabilized spacetime (DSD/SST) finite element formulation. The capability to solve 3D problems involving fluid-structure interactions is demonstrated by investigating the dynamics of a flexible cantilevered pipe conveying fluid. Computations of flow past a stationary rectangular wing at Reynolds number 1000, 2500 and lo7 reveal interesting flow patterns. In these computations, at each time step approximately 3 x lo6 non-linear equations are solved to update the flow field. Also, preliminary results are presented for flow past a wing in flapping motion. In this case a specially designed mesh moving scheme is employed to eliminate the need for remeshing. All these computations are canied out on the Amy High Performance Computing Research Center supercomputers CM-200 and CM-5, with major speed-ups compared with traditional supercomputers. The coupled equation systems arising from the finite element discretizations of these large-scale problems are solved iteratively with diagonal preconditioners. In some cases, to reduce the memory requirements even further, these iterations are carried out with a matrix-fiee strategy. The finite element formulations and their parallel implementations assume unstructured meshes.

146 citations

Journal ArticleDOI
TL;DR: In this article, particle image velocimetry (PIV) measurements characterizing turbulent flow in a channel with superhydrophobic surfaces, structured and wetting surfaces, and smooth bottom surfaces were obtained.
Abstract: This paper reports particle image velocimetry (PIV) measurements characterizing turbulent flow in a channel with superhydrophobic surfaces, structured and wetting surfaces, and smooth bottom surfaces. The superhydrophobic and structured surfaces are fabricated with alternating ribs and cavities. Both longitudinal and transverse rib/cavity orientations were considered and the surfaces were made superhydrophobic by application of a Teflon coating. The widths of the ribs and cavities were 8 and 32μm, respectively, and the depth of the cavities was 15μm. PIV measurements were acquired for all surfaces considered over the Reynolds numbers range from 4800 to 10 000. Results from the smooth bottom wall measurements were used as a basis for comparison. The hydraulic diameter of the channel was nominally 8.2mm with an aspect ratio of 8.9. The PIV data captured aggregate velocities over multiple rib/cavity modules, such that a spanwise-averaged (over the width of the laser beam) velocity profile was obtained at the...

145 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
95% related
Laminar flow
56K papers, 1.2M citations
92% related
Fluid dynamics
47.9K papers, 1M citations
90% related
Turbulence
112.1K papers, 2.7M citations
89% related
Heat transfer
181.7K papers, 2.9M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202335
202275
2021170
2020177
2019273
2018281