scispace - formally typeset

Pipeline transport

About: Pipeline transport is a(n) research topic. Over the lifetime, 19519 publication(s) have been published within this topic receiving 90414 citation(s). The topic is also known as: pipeline transportation & transport by pipeline. more


Proceedings ArticleDOI: 10.1145/1236360.1236396
Ivan Stoianov1, Lama Nachman1, Samuel Madden1, T. Tokmouline1  +1 moreInstitutions (1)
25 Apr 2007-
Abstract: US water utilities are faced with mounting operational and maintenance costs as a result of aging pipeline infrastructures. Leaks and ruptures in water supply pipelines and blockages and overflow events in sewer collectors cost millions of dollars a year, and monitoring and repairing this underground infrastructure presents a severe challenge. In this paper, we discuss how wireless sensor networks (WSNs) can increase the spatial and temporal resolution of operational data from pipeline infrastructures and thus address the challenge of near real-time monitoring and eventually control. We focus on the use of WSNs for monitoring large diameter bulk-water transmission pipelines. We outline a system, PipeNet, we have been developing for collecting hydraulic and acoustic/vibration data at high sampling rates as well as algorithms for analyzing this data to detect and locate leaks. Challenges include sampling at high data rates, maintaining aggressive duty cycles, and ensuring tightly time- synchronized data collection, all under a strict power budget. We have carried out an extensive field trial with Boston Water and Sewer Commission in order to evaluate some of the critical components of PipeNet. Along with the results of this preliminary trial, we describe the results of extensive laboratory experiments which are used to evaluate our analysis and data processing solutions. Our prototype deployment has led to the development of a reusable, field-reprogrammable software infrastructure for distributed high-rate signal processing in wireless sensor networks, which we also describe. more

517 Citations

Journal ArticleDOI: 10.1007/S00254-003-0838-6
E. Çevik, Tamer Topal1Institutions (1)
Abstract: A segment of natural gas pipeline was damaged due to landsliding near Hendek. Re-routing of the pipeline is planned, but it requires the preparation of a landslide susceptibility map. In this study, the statistical index (Wi) and weighting factor (Wf) methods have been used with GIS to prepare a landslide susceptibility map of the problematic segment of the pipeline. For this purpose, thematic layers including landslide inventory, lithology, slope, aspect, elevation, land use/land cover, distance to stream, and drainage density were used. In the study area, landslides occur in the unconsolidated to semi-consolidated clayey unit and regolith. The Wf method gives better results than the Wi method. Lithology is found to be the most important aspect in the study area. Based on the findings obtained in this study, the unconsolidated to semi-consolidated clayey unit and alluvium should be avoided during re-routing. Agricultural activities should not be allowed in the close vicinity of the pipeline. more

Topics: Landslide (61%), Thematic map (50%), Pipeline transport (50%)

286 Citations

Journal ArticleDOI: 10.1016/S1750-5836(07)00119-3
Sean T. McCoy1, Edward S. Rubin1Institutions (1)
Abstract: Carbon dioxide capture and storage (CCS) involves the capture of CO2 at a large industrial facility, such as a power plant, and its transport to a geological (or other) storage site where CO2 is sequestered. Previous work has identified pipeline transport of liquid CO2 as the most economical method of transport for large volumes of CO2. However, there is little published work on the economics of CO2 pipeline transport. The objective of this paper is to estimate total cost and the cost per tonne of transporting varying amounts of CO2 over a range of distances for different regions of the continental United States. An engineering-economic model of pipeline CO2 transport is developed for this purpose. The model incorporates a probabilistic analysis capability that can be used to quantify the sensitivity of transport cost to variability and uncertainty in the model input parameters. The results of a case study show a pipeline cost of US$ 1.16 per tonne of CO2 transported for a 100 km pipeline constructed in the Midwest handling 5 million tonnes of CO2 per year (the approximate output of an 800 MW coal-fired power plant with carbon capture). For the same set of assumptions, the cost of transport is US$ 0.39 per tonne lower in the Central US and US$ 0.20 per tonne higher in the Northeast US. Costs are sensitive to the design capacity of the pipeline and the pipeline length. For example, decreasing the design capacity of the Midwest US pipeline to 2 million tonnes per year increases the cost to US$ 2.23 per tonne of CO2 for a 100 km pipeline, and US$ 4.06 per tonne CO2 for a 200 km pipeline. An illustrative probabilistic analysis assigns uncertainty distributions to the pipeline capacity factor, pipeline inlet pressure, capital recovery factor, annual O&M cost, and escalation factors for capital cost components. The result indicates a 90% probability that the cost per tonne of CO2 is between US$ 1.03 and US$ 2.63 per tonne of CO2 transported in the Midwest US. In this case, the transport cost is shown to be most sensitive to the pipeline capacity factor and the capital recovery factor. The analytical model elaborated in this paper can be used to estimate pipeline costs for a broad range of potential CCS projects. It can also be used in conjunction with models producing more detailed estimates for specific projects, which requires substantially more information on site-specific factors affecting pipeline routing. more

Topics: Pipeline transport (58%), Pipeline (computing) (54%), Tonne (53%) more

280 Citations

Goncalves Carlos Alberto De Ca1Institutions (1)
28 Aug 1991-
Abstract: A process to clear pipelines carrying fluids viscous and/or rich in organic residues includes the introduction of a heating element inside a pipeline carrying the fluids through a coupling spool which is intercalated in the fluid-carrying pipeline. Simultaneously an electric current is applied to the heating element so that the heat generated by the heating element is transmitted to the viscous fluid or to the compacted residual mass inside the fluid-carrying pipeline, causing the detachment of those residues from the internal wall of the pipeline and re-establishing the conditions for fluid flow. more

273 Citations

Journal ArticleDOI: 10.1007/S12010-007-9085-8
Abstract: Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for small- and large-project sizes, the relative cost of transportation by truck, rail, ship, and pipeline for three biomass feedstocks, by truck and pipeline for ethanol, and by transmission line for electrical power. Distance fixed costs (loading and unloading) and distance variable costs (transport, including power losses during transmission), are calculated for each biomass type and mode of transportation. Costs are normalized to a common basis of a giga Joules of biomass. The relative cost of moving products vs feedstock is an approximate measure of the incentive for location of biomass processing at the source of biomass, rather than at the point of ultimate consumption of produced energy. In general, the cost of transporting biomass is more than the cost of transporting its energy products. The gap in cost for transporting biomass vs power is significantly higher than the incremental cost of building and operating a power plant remote from a transmission grid. The cost of power transmission and ethanol transport by pipeline is highly dependent on scale of project. Transport of ethanol by truck has a lower cost than by pipeline up to capacities of 1800 t/d. The high cost of transshipment to a ship precludes shipping from being an economical mode of transport for distances less than 800 km (woodchips) and 1500 km (baled agricultural residues). more

Topics: Marginal cost (55%), Fixed cost (54%), Biomass (53%) more

264 Citations

No. of papers in the topic in previous years

Top Attributes

Show by:

Topic's top 5 most impactful authors

Yongtu Liang

17 papers, 227 citations

Angus R. Simpson

11 papers, 234 citations

Haoran Zhang

11 papers, 123 citations

Haroun Mahgerefteh

10 papers, 154 citations

David White

10 papers, 117 citations

Network Information
Related Topics (5)
Natural gas

34.9K papers, 463.3K citations

84% related
Fuel gas

25.4K papers, 199.1K citations

82% related
Power station

33K papers, 375.9K citations

82% related

175.4K papers, 744.7K citations

81% related
Test data

22.4K papers, 260K citations

80% related