scispace - formally typeset
Search or ask a question
Topic

Piperlongumine

About: Piperlongumine is a research topic. Over the lifetime, 282 publications have been published within this topic receiving 6580 citations. The topic is also known as: Piperlongumine & piplartine.


Papers
More filters
Journal ArticleDOI
14 Jul 2011-Nature
TL;DR: The ability of a small molecule to induce apoptosis selectively in cells that have a cancer genotypes is demonstrated, by targeting a non-oncogene co-dependency acquired through the expression of the cancer genotype in response to transformation-induced oxidative stress.
Abstract: A chemical screen has identified a small molecule, piperlongumine (PL), as a compound that induces selective killing of cancer cells. Piperlongumine acts by increasing reactive oxygen species (ROS) levels in cancer cells. Although it is active against a number of tumour models in vivo irrespective of p53 status, it does not affect normal tissues, including rapidly proliferating non-tumour cells. This work suggests a novel strategy for eradicating cancer cells by targeting the ROS stress-response pathway, but further work will be needed to identify determinants of piperlongumine sensitivity in a wider range of cancers. Malignant transformation, driven by gain-of-function mutations in oncogenes and loss-of-function mutations in tumour suppressor genes, results in cell deregulation that is frequently associated with enhanced cellular stress (for example, oxidative, replicative, metabolic and proteotoxic stress, and DNA damage)1. Adaptation to this stress phenotype is required for cancer cells to survive, and consequently cancer cells may become dependent upon non-oncogenes that do not ordinarily perform such a vital function in normal cells. Thus, targeting these non-oncogene dependencies in the context of a transformed genotype may result in a synthetic lethal interaction and the selective death of cancer cells2. Here we used a cell-based small-molecule screening and quantitative proteomics approach that resulted in the unbiased identification of a small molecule that selectively kills cancer cells but not normal cells. Piperlongumine increases the level of reactive oxygen species (ROS) and apoptotic cell death in both cancer cells and normal cells engineered to have a cancer genotype, irrespective of p53 status, but it has little effect on either rapidly or slowly dividing primary normal cells. Significant antitumour effects are observed in piperlongumine-treated mouse xenograft tumour models, with no apparent toxicity in normal mice. Moreover, piperlongumine potently inhibits the growth of spontaneously formed malignant breast tumours and their associated metastases in mice. Our results demonstrate the ability of a small molecule to induce apoptosis selectively in cells that have a cancer genotype, by targeting a non-oncogene co-dependency acquired through the expression of the cancer genotype in response to transformation-induced oxidative stress3,4,5.

909 citations

Journal ArticleDOI
TL;DR: It is concluded that piplartine is effective for use in cancer therapy and its safety using chronic toxicological studies should be addressed to support the viability of clinical trials.

244 citations

Journal ArticleDOI
TL;DR: The findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.
Abstract: NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

234 citations

Journal ArticleDOI
TL;DR: It is shown that analogs lacking a reactive C7-C8 olefin can elevate ROS to levels observed with piperlongumine but show markedly reduced cell death, suggesting that ROS-independent mechanisms, including cellular cross-linking events, may also contribute to piper longumine’s induction of apoptosis.
Abstract: Piperlongumine is a naturally occurring small molecule recently identified to be toxic selectively to cancer cells in vitro and in vivo. This compound was found to elevate cellular levels of reactive oxygen species (ROS) selectively in cancer cell lines. The synthesis of 80 piperlongumine analogs has revealed structural modifications that retain, enhance, and ablate key piperlongumine-associated effects on cells, including elevation of ROS, cancer cell death, and selectivity for cancer cells over nontransformed cell types. Structure/activity relationships suggest that the electrophilicity of the C2-C3 olefin is critical for the observed effects on cells. Furthermore, we show that analogs lacking a reactive C7-C8 olefin can elevate ROS to levels observed with piperlongumine but show markedly reduced cell death, suggesting that ROS-independent mechanisms, including cellular cross-linking events, may also contribute to piperlongumine’s induction of apoptosis. In particular, we have identified irreversible protein glutathionylation as a process associated with cellular toxicity. We propose a mechanism of action for piperlongumine that may be relevant to other small molecules having two sites of reactivity, one with greater and the other with lesser electrophilicity.

193 citations

Journal ArticleDOI
19 Nov 2016
TL;DR: PL preferentially killed senescent human WI-38 fibroblasts when senescence was induced by ionizing radiation, replicative exhaustion, or ectopic expression of the oncogene Ras, and these studies demonstrate that PL is a novel lead for developing senolytic agents.
Abstract: Accumulating evidence indicates that senescent cells play an important role in many age-associated diseases. The pharmacological depletion of senescent cells (SCs) with a "senolytic agent", a small molecule that selectively kills SCs, is a potential novel therapeutic approach for these diseases. Recently, we discovered ABT-263, a potent and highly selective senolytic agent, by screening a library of rationally-selected compounds. With this screening approach, we also identified a second senolytic agent called piperlongumine (PL). PL is a natural product that is reported to have many pharmacological effects, including anti-tumor activity. We show here that PL preferentially killed senescent human WI-38 fibroblasts when senescence was induced by ionizing radiation, replicative exhaustion, or ectopic expression of the oncogene Ras. PL killed SCs by inducing apoptosis, and this process did not require the induction of reactive oxygen species. In addition, we found that PL synergistically killed SCs in combination with ABT-263, and initial structural modifications to PL identified analogs with improved potency and/or selectivity in inducing SC death. Overall, our studies demonstrate that PL is a novel lead for developing senolytic agents.

175 citations


Network Information
Related Topics (5)
Cancer cell
93.4K papers, 3.5M citations
71% related
Programmed cell death
60.5K papers, 3.8M citations
70% related
Apoptosis
115.4K papers, 4.8M citations
70% related
Cell cycle
81.7K papers, 3.3M citations
69% related
Kinase
65.8K papers, 3.5M citations
68% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202129
202034
201939
201833
201727
201632