scispace - formally typeset
Search or ask a question
Topic

Pitch detection algorithm

About: Pitch detection algorithm is a research topic. Over the lifetime, 1517 publications have been published within this topic receiving 30063 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An algorithm is presented for the estimation of the fundamental frequency (F0) of speech or musical sounds, based on the well-known autocorrelation method with a number of modifications that combine to prevent errors.
Abstract: An algorithm is presented for the estimation of the fundamental frequency (F0) of speech or musical sounds. It is based on the well-known autocorrelation method with a number of modifications that combine to prevent errors. The algorithm has several desirable features. Error rates are about three times lower than the best competing methods, as evaluated over a database of speech recorded together with a laryngograph signal. There is no upper limit on the frequency search range, so the algorithm is suited for high-pitched voices and music. The algorithm is relatively simple and may be implemented efficiently and with low latency, and it involves few parameters that must be tuned. It is based on a signal model (periodic signal) that may be extended in several ways to handle various forms of aperiodicity that occur in particular applications. Finally, interesting parallels may be drawn with models of auditory processing.

1,975 citations

01 Jan 1993
TL;DR: In this article, the authors present an autocorrelation-based method for detecting the acoustic pitch period of a sound, where the position of the maximum of the auto-correlation function of the sound can be found from the relative height of this maximum.
Abstract: We present a straightforward and robust algorithm for periodicity detection, working in the lag (autocorrelation) domain. When it is tested for periodic signals and for signals with additive noise or jitter, it proves to be several orders of magnitude more accurate than the methods commonly used for speech analysis. This makes our method capable of measuring harmonics-to-noise ratios in the lag domain with an accuracy and reliability much greater than that of any of the usual frequency-domain methods. By definition, the best candidate for the acoustic pitch period of a sound can be found from the position of the maximum of the autocorrelation function of the sound, while the degree of periodicity (the harmonics-to-noise ratio) of the sound can be found from the relative height of this maximum. However, sampling and windowing cause problems in accurately determining the position and height of the maximum. These problems have led to inaccurate timedomain and cepstral methods for pitch detection, and to the exclusive use of frequency-domain methods for the determination of the harmonics-to-noise ratio. In this paper, I will tackle these problems. Table 1 shows the specifications of the resulting algorithm for two spectrally maximally different kinds of periodic sounds: a sine wave and a periodic pulse train; other periodic sounds give results between these. Table 1. The accuracy of the algorithm for a sampled sine wave and for a correctly sampled periodic pulse train, as a function of the number of periods that fit in the duration of a Hanning window. These results are valid for pitch frequencies up to 80% of the Nyquist frequency. These results were measured for a sampling frequency of 10 kHz and window lengths of 40 ms (for pitch) and 80 ms (for HNR), but generalize to other sampling frequencies and window lengths (see section 5).

1,172 citations

Journal ArticleDOI
TL;DR: This paper focuses on the development of model-Based Speech Segregation in CASA systems, which was first introduced in 2000 and has since been upgraded to a full-blown model-based system.
Abstract: Foreword. Preface. Contributors. Acronyms. 1. Fundamentals of Computational Auditory Scene Analysis (DeLiang Wang and Guy J. Brown). 1.1 Human Auditory Scene Analysis. 1.1.1 Structure and Function of the Auditory System. 1.1.2 Perceptual Organization of Simple Stimuli. 1.1.3 Perceptual Segregation of Speech from Other Sounds. 1.1.4 Perceptual Mechanisms. 1.2 Computational Auditory Scene Analysis (CASA). 1.2.1 What Is CASA? 1.2.2 What Is the Goal of CASA? 1.2.3 Why CASA? 1.3 Basics of CASA Systems. 1.3.1 System Architecture. 1.3.2 Cochleagram. 1.3.3 Correlogram. 1.3.4 Cross-Correlogram. 1.3.5 Time-Frequency Masks. 1.3.6 Resynthesis. 1.4 CASA Evaluation. 1.4.1 Evaluation Criteria. 1.4.2 Corpora. 1.5 Other Sound Separation Approaches. 1.6 A Brief History of CASA (Prior to 2000). 1.6.1 Monaural CASA Systems. 1.6.2 Binaural CASA Systems. 1.6.3 Neural CASA Models. 1.7 Conclusions 36 Acknowledgments. References. 2. Multiple F0 Estimation (Alain de Cheveigne). 2.1 Introduction. 2.2 Signal Models. 2.3 Single-Voice F0 Estimation. 2.3.1 Spectral Approach. 2.3.2 Temporal Approach. 2.3.3 Spectrotemporal Approach. 2.4 Multiple-Voice F0 Estimation. 2.4.1 Spectral Approach. 2.4.2 Temporal Approach. 2.4.3 Spectrotemporal Approach. 2.5 Issues. 2.5.1 Spectral Resolution. 2.5.2 Temporal Resolution. 2.5.3 Spectrotemporal Resolution. 2.6 Other Sources of Information. 2.6.1 Temporal and Spectral Continuity. 2.6.2 Instrument Models. 2.6.3 Learning-Based Techniques. 2.7 Estimating the Number of Sources. 2.8 Evaluation. 2.9 Application Scenarios. 2.10 Conclusion. Acknowledgments. References. 3. Feature-Based Speech Segregation (DeLiang Wang). 3.1 Introduction. 3.2 Feature Extraction. 3.2.1 Pitch Detection. 3.2.2 Onset and Offset Detection. 3.2.3 Amplitude Modulation Extraction. 3.2.4 Frequency Modulation Detection. 3.3 Auditory Segmentation. 3.3.1 What Is the Goal of Auditory Segmentation? 3.3.2 Segmentation Based on Cross-Channel Correlation and Temporal Continuity. 3.3.3 Segmentation Based on Onset and Offset Analysis. 3.4 Simultaneous Grouping. 3.4.1 Voiced Speech Segregation. 3.4.2 Unvoiced Speech Segregation. 3.5 Sequential Grouping. 3.5.1 Spectrum-Based Sequential Grouping. 3.5.2 Pitch-Based Sequential Grouping. 3.5.3 Model-Based Sequential Grouping. 3.6 Discussion. Acknowledgments. References. 4. Model-Based Scene Analysis (Daniel P. W. Ellis). 4.1 Introduction. 4.2 Source Separation as Inference. 4.3 Hidden Markov Models. 4.4 Aspects of Model-Based Systems. 4.4.1 Constraints: Types and Representations. 4.4.2 Fitting Models. 4.4.3 Generating Output. 4.5 Discussion. 4.5.1 Unknown Interference. 4.5.2 Ambiguity and Adaptation. 4.5.3 Relations to Other Separation Approaches. 4.6 Conclusions. References. 5. Binaural Sound Localization (Richard M. Stern, Guy J. Brown, and DeLiang Wang). 5.1 Introduction. 5.2 Physical and Physiological Mechanisms Underlying Auditory Localization. 5.2.1 Physical Cues. 5.2.2 Physiological Estimation of ITD and IID. 5.3 Spatial Perception of Single Sources. 5.3.1 Sensitivity to Differences in Interaural Time and Intensity. 5.3.2 Lateralization of Single Sources. 5.3.3 Localization of Single Sources. 5.3.4 The Precedence Effect. 5.4 Spatial Perception of Multiple Sources. 5.4.1 Localization of Multiple Sources. 5.4.2 Binaural Signal Detection. 5.5 Models of Binaural Perception. 5.5.1 Classical Models of Binaural Hearing. 5.5.2 Cross-Correlation-Based Models of Binaural Interaction. 5.5.3 Some Extensions to Cross-Correlation-Based Binaural Models. 5.6 Multisource Sound Localization. 5.6.1 Estimating Source Azimuth from Interaural Cross-Correlation. 5.6.2 Methods for Resolving Azimuth Ambiguity. 5.6.3 Localization of Moving Sources. 5.7 General Discussion. Acknowledgments. References. 6. Localization-Based Grouping (Albert S. Feng and Douglas L. Jones). 6.1 Introduction. 6.2 Classical Beamforming Techniques. 6.2.1 Fixed Beamforming Techniques. 6.2.2 Adaptive Beamforming Techniques. 6.2.3 Independent Component Analysis Techniques. 6.2.4 Other Localization-Based Techniques. 6.3 Location-Based Grouping Using Interaural Time Difference Cue. 6.4 Location-Based Grouping Using Interaural Intensity Difference Cue. 6.5 Location-Based Grouping Using Multiple Binaural Cues. 6.6 Discussion and Conclusions. Acknowledgments. References. 7. Reverberation (Guy J. Brown and Kalle J. Palomaki). 7.1 Introduction. 7.2 Effects of Reverberation on Listeners. 7.2.1 Speech Perception. 7.2.2 Sound Localization. 7.2.3 Source Separation and Signal Detection. 7.2.4 Distance Perception. 7.2.5 Auditory Spatial Impression. 7.3 Effects of Reverberation on Machines. 7.4 Mechanisms Underlying Robustness to Reverberation in Human Listeners. 7.4.1 The Role of Slow Temporal Modulations in Speech Perception. 7.4.2 The Binaural Advantage. 7.4.3 The Precedence Effect. 7.4.4 Perceptual Compensation for Spectral Envelope Distortion. 7.5 Reverberation-Robust Acoustic Processing. 7.5.1 Dereverberation. 7.5.2 Reverberation-Robust Acoustic Features. 7.5.3 Reverberation Masking. 7.6 CASA and Reverberation. 7.6.1 Systems Based on Directional Filtering. 7.6.2 CASA for Robust ASR in Reverberant Conditions. 7.6.3 Systems that Use Multiple Cues. 7.7 Discussion and Conclusions. Acknowledgments. References. 8. Analysis of Musical Audio Signals (Masataka Goto). 8.1 Introduction. 8.2 Music Scene Description. 8.2.1 Music Scene Descriptions. 8.2.2 Difficulties Associated with Musical Audio Signals. 8.3 Estimating Melody and Bass Lines. 8.3.1 PreFEst-front-end: Forming the Observed Probability Density Functions. 8.3.2 PreFEst-core: Estimating the F0's Probability Density Function. 8.3.3 PreFEst-back-end: Sequential F0 Tracking by Multiple-Agent Architecture. 8.3.4 Other Methods. 8.4 Estimating Beat Structure. 8.4.1 Estimating Period and Phase. 8.4.2 Dealing with Ambiguity. 8.4.3 Using Musical Knowledge. 8.5 Estimating Chorus Sections and Repeated Sections. 8.5.1 Extracting Acoustic Features and Calculating Their Similarity. 8.5.2 Finding Repeated Sections. 8.5.3 Grouping Repeated Sections. 8.5.4 Detecting Modulated Repetition. 8.5.5 Selecting Chorus Sections. 8.5.6 Other Methods. 8.6 Discussion and Conclusions. 8.6.1 Importance. 8.6.2 Evaluation Issues. 8.6.3 Future Directions. References. 9. Robust Automatic Speech Recognition (Jon Barker). 9.1 Introduction. 9.2 ASA and Speech Perception in Humans. 9.2.1 Speech Perception and Simultaneous Grouping. 9.2.2 Speech Perception and Sequential Grouping. 9.2.3 Speech Schemes. 9.2.4 Challenges to the ASA Account of Speech Perception. 9.2.5 Interim Summary. 9.3 Speech Recognition by Machine. 9.3.1 The Statistical Basis of ASR. 9.3.2 Traditional Approaches to Robust ASR. 9.3.3 CASA-Driven Approaches to ASR. 9.4 Primitive CASA and ASR. 9.4.1 Speech and Time-Frequency Masking. 9.4.2 The Missing-Data Approach to ASR. 9.4.3 Marginalization-Based Missing-Data ASR Systems. 9.4.4 Imputation-Based Missing-Data Solutions. 9.4.5 Estimating the Missing-Data Mask. 9.4.6 Difficulties with the Missing-Data Approach. 9.5 Model-Based CASA and ASR. 9.5.1 The Speech Fragment Decoding Framework. 9.5.2 Coupling Source Segregation and Recognition. 9.6 Discussion and Conclusions. 9.7 Concluding Remarks. References. 10. Neural and Perceptual Modeling (Guy J. Brown and DeLiang Wang). 10.1 Introduction. 10.2 The Neural Basis of Auditory Grouping. 10.2.1 Theoretical Solutions to the Binding Problem. 10.2.2 Empirical Results on Binding and ASA. 10.3 Models of Individual Neurons. 10.3.1 Relaxation Oscillators. 10.3.2 Spike Oscillators. 10.3.3 A Model of a Specific Auditory Neuron. 10.4 Models of Specific Perceptual Phenomena. 10.4.1 Perceptual Streaming of Tone Sequences. 10.4.2 Perceptual Segregation of Concurrent Vowels with Different F0s. 10.5 The Oscillatory Correlation Framework for CASA. 10.5.1 Speech Segregation Based on Oscillatory Correlation. 10.6 Schema-Driven Grouping. 10.7 Discussion. 10.7.1 Temporal or Spatial Coding of Auditory Grouping. 10.7.2 Physiological Support for Neural Time Delays. 10.7.3 Convergence of Psychological, Physiological, and Computational Approaches. 10.7.4 Neural Models as a Framework for CASA. 10.7.5 The Role of Attention. 10.7.6 Schema-Based Organization. Acknowledgments. References. Index.

940 citations

Journal ArticleDOI
TL;DR: A comparative performance study of seven pitch detection algorithms was conducted, consisting of eight utterances spoken by three males, three females, and one child, to assess their relative performance as a function of recording condition, and pitch range of the various speakers.
Abstract: A comparative performance study of seven pitch detection algorithms was conducted. A speech data base, consisting of eight utterances spoken by three males, three females, and one child was constructed. Telephone, close talking microphone, and wideband recordings were made of each of the utterances. For each of the utterances in the data base; a "standard" pitch contour was semiautomatically measured using a highly sophisticated interactive pitch detection program. The "standard" pitch contour was then compared with the pitch contour that was obtained from each of the seven programmed pitch detectors. The algorithms used in this study were 1) a center clipping, infinite-peak clipping, modified autocorrelation method (AUTOC), 2) the cepstral method (CEP), 3) the simplified inverse filtering technique (SIFT) method, 4) the parallel processing time-domain method (PPROC), 5) the data reduction method (DARD), 6) a spectral flattening linear predictive coding (LPC) method, and 7) the average magnitude difference function (AMDF) method. A set of measurements was made on the pitch contours to quantify the various types of errors which occur in each of the above methods. Included among the error measurements were the average and standard deviation of the error in pitch period during voiced regions, the number of gross errors in the pitch period, and the average number of voiced-unvoiced classification errors. For each of the error measurements, the individual pitch detectors could be rank ordered as a measure of their relative performance as a function of recording condition, and pitch range of the various speakers. Performance scores are presented for each of the seven pitch detectors based on each of the categories of error.

793 citations

BookDOI
01 Jan 1983

669 citations


Network Information
Related Topics (5)
Signal processing
73.4K papers, 983.5K citations
78% related
Noise
110.4K papers, 1.3M citations
77% related
Hidden Markov model
28.3K papers, 725.3K citations
74% related
Filter (signal processing)
81.4K papers, 1M citations
73% related
Frequency domain
53.8K papers, 701.3K citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
20229
20218
202020
201925
201826