scispace - formally typeset
Search or ask a question
Topic

Pitching moment

About: Pitching moment is a research topic. Over the lifetime, 3213 publications have been published within this topic receiving 38721 citations.


Papers
More filters
01 Apr 2000
TL;DR: In this article, a new platform force and moment balance, similar to an already existing balance, was designed and built to perform lift, drag and moment measurements at low Reynolds numbers Balance characteristics and validation data are presented Results show a good agreement between published data and data obtained with the new balance.
Abstract: : A description of the micro-air vehicle (MAV) concept and design requirements is presented These vehicles are very small and therefore operate at chord Reynolds numbers below 200,000 where very little data is available on the performance of lifting surfaces, ie, airfoils and low aspect-ratio wings This paper presents the results of a continuing study of the methods that can be used to obtain reliable force and moment data on thin wings in wind and water tunnels To this end, a new platform force and moment balance, similar to an already existing balance, was designed and built to perform lift, drag and moment measurements at low Reynolds numbers Balance characteristics and validation data are presented Results show a good agreement between published data and data obtained with the new balance Results for lilt, drag and pitching moment about the quarter chord with the existing aerodynamic balance on a series of thin flat plates and cambered plates at low Reynolds numbers are presented They show that the cambered plates offer better aerodynamic characteristics and performance Moreover, it appears that the trailing-edge geometry of the wings and the turbulence intensity up to about 1% in the wind tunnel do not have a strong effect on the lilt and drag for thin wings at low Reynolds numbers However, the presence of two endplates for two-dimensional tests and one endplate for the semi-infinite tests appears to have an undesirable influence on the lift characteristics at low Reynolds numbers

160 citations

Journal ArticleDOI
TL;DR: In this article, the authors performed a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a rigid and flexible wing.
Abstract: Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.

155 citations

Journal ArticleDOI
TL;DR: In this article, the authors present wind tunnel test data for the aerodynamic properties of an airfoil used on a wind turbine when subjected to incident flow turbulence levels of 05-16% and placed at angles of attack up to 90°.

153 citations

Journal ArticleDOI
Joseph Katz1
TL;DR: In this article, a discrete vortex method was used to analyze the separated non-steady flow about a cambered airfoil, where the chordwise location of the separation point was assumed to be known from experiments or flow-visualization data.
Abstract: A discrete vortex method was used to analyze the separated non-steady flow about a cambered airfoil. The foil flow modelling is based on the thin lifting-surface approach, where the chordwise location of the separation point is assumed to be known from experiments or flow-visualization data. Calculated results provided good agreement when compared with the post-stall aerodynamic data of two airfoils. Those airfoil sections differed in the extent of travel of the separation point with increasing angle of attack. Furthermore, the periodic wake shedding was analyzed and its time-dependent influence on the airfoil was investigated.

149 citations

Journal ArticleDOI
TL;DR: In this paper, the NACA0012 airfoil geometry is extended in chord so that its trailing edge is sharp and a family of grid-convergence trends of two-dimensional Euler solutions are investigated.
Abstract: Grid-convergence trends of two-dimensional Euler solutions are investigated. The airfoil geometry under study is based on the NACA0012 equation. However, unlike the NACA0012 airfoil, which has a blunt base at the trailing edge, the study geometry is extended in chord so that its trailing edge is sharp. The flow solutions use extremely- high-quality grids that are developed with the aid of the Karman-Trefftz conformal transformation. The topology of each grid is that of a standard O-mesh. The grids naturally extend to a far-field boundary approximately 150 chord lengths away from the airfoil. Each quadrilateral cell of the resulting mesh has an aspect ratio of one. The intersecting lines of the grid are essentially orthogonal at each vertex within the mesh. A family of grids is recursively derived starting with the finest mesh. Here, each successively coarser grid in the sequence is constructed by eliminating every other node of the current grid, in both computational directions. In all, a total of eight grids comprise the family, with the coarsest-to-finest meshes having dimensions of 32 x 32-4096 x 4096 cells, respectively. Note that the finest grid in this family is composed of over 16 million cells, and is suitable for 13 levels of multigrid. The geometry and grids are all numerically defined such that they are exactly symmetrical about the horizontal axis to ensure that a nonlifting solution is possible at zero degrees angle-of-attack attitude. Characteristics of three well-known flow solvers (FLO82, OVERFLOW, and CFL3D) are studied using a matrix of four flow conditions: (subcritical and transonic) by (nonlifting and lifting). The matrix allows the ability to investigate grid-convergence trends of 1) drag with and without lifting effects, 2) drag with and without shocks, and 3) lift and moment at constant angles-of-attack. Results presented herein use 64-bit computations and are converged to machine-level-zero residuals. All three of the flow solvers have difficulty meeting this requirement on the finest meshes, especially at the transonic flow conditions. Some unexpected results are also discussed. Take for example the subcritical cases. FLO82 solutions do not reach asymptotic grid convergence of second-order accuracy until the mesh approaches one quarter of a million cells. OVERFLOW exhibits at best a first-order accuracy for a central-difference stencil. CFL3D shows second-order accuracy for drag, but only first-order trends for lift and pitching moment. For the transonic cases, the order of accuracy deteriorates for all of the methods. A comparison of the limiting values of the aerodynamic coefficients is provided. Drag for the subcritical cases nearly approach zero for all of the computational fluid dynamics methods reviewed. These and other results are discussed.

138 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
82% related
Boundary layer
64.9K papers, 1.4M citations
79% related
Turbine
106.6K papers, 1M citations
79% related
Laminar flow
56K papers, 1.2M citations
78% related
Turbulence
112.1K papers, 2.7M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202353
202294
202168
202076
201983
201886