scispace - formally typeset
Search or ask a question
Topic

Plaintext-aware encryption

About: Plaintext-aware encryption is a research topic. Over the lifetime, 1980 publications have been published within this topic receiving 101775 citations. The topic is also known as: Plaintext awareness.


Papers
More filters
Book ChapterDOI
14 Aug 2011
TL;DR: Boldyreva et al. as discussed by the authors showed that random order-preserving function (ROPF) can leak both the value of any plaintext and the distance between any two plaintexts to within a range of possibilities roughly the square root of the domain size.
Abstract: We further the study of order-preserving symmetric encryption (OPE), a primitive for allowing efficient range queries on encrypted data, recently initiated (from a cryptographic perspective) by Boldyreva et al. (Eurocrypt'09). First, we address the open problem of characterizing what encryption via a random order-preserving function (ROPF) leaks about underlying data (ROPF being the "ideal object" in the security definition, POPF, satisfied by their scheme.) In particular, we show that, for a database of randomly distributed plaintexts and appropriate choice of parameters, ROPF encryption leaks neither the precise value of any plaintext nor the precise distance between any two of them. The analysis here is quite technically non-trivial and introduces useful new techniques. On the other hand, we also show that ROPF encryption does leak both the value of any plaintext as well as the distance between any two plaintexts to within a range of possibilities roughly the square root of the domain size. We then study schemes that are not order-preserving, but which nevertheless allow efficient range queries and achieve security notions stronger than POPF. In a setting where the entire database is known in advance of key-generation (considered in several prior works), we show that recent constructions of "monotone minimal perfect hash functions" allow to efficiently achieve (an adaptation of) the notion of IND-O(rdered) CPA also considered by Boldyreva et al., which asks that only the order relations among the plaintexts is leaked. Finally, we introduce modular order-preserving encryption (MOPE), in which the scheme of Boldyreva et al. is prepended with a shift cipher. MOPE improves the security of OPE in a sense, as it does not leak any information about plaintext location. We clarify that our work should not be interpreted as saying the original scheme of Boldyreva et al., or the variants that we introduce, are "secure" or "insecure." Rather, the goal of this line of research is to help practitioners decide whether the options provide a suitable security-functionality tradeoff for a given application.

463 citations

Journal Article
TL;DR: This conversion is the first generic transformation from an arbitrary one-way asymmetricryption scheme to a chosen-ciphertext secure asymmetric encryption scheme in the random oracle model.
Abstract: This paper shows a generic and simple conversion from weak asymmetric and symmetric encryption schemes into an asymmetric encryption scheme which is secure in a very strong sense- indistinguishability against adaptive chosen-ciphertext attacks in the random oracle model. In particular, this conversion can be applied efficiently to an asymmetric encryption scheme that provides a large enough coin space and, for every message, many enough variants of the encryption, like the ElGamal encryption scheme.

457 citations

Book ChapterDOI
19 Aug 2001
TL;DR: It is shown that any secure channels protocol designed to work with any combination of secure encryption (against chosen plaintext attacks) and secure MAC must use the encrypt-then-authenticate method.
Abstract: We study the question of how to generically compose symmetric encryption and authentication when building "secure channels" for the protection of communications over insecure networks. We show that any secure channels protocol designed to work with any combination of secure encryption (against chosen plaintext attacks) and secure MAC must use the encrypt-then-authenticate method. We demonstrate this by showing that the other common methods of composing encryption and authentication, including the authenticate-then-encrypt method used in SSL, are not generically secure. We show an example of an encryption function that provides (Shannon's) perfect secrecy but when combined with any MAC function under the authenticate-then-encrypt method yields a totally insecure protocol (for example, finding passwords or credit card numbers transmitted under the protection of such protocol becomes an easy task for an active attacker). The same applies to the encrypt-and-authenticate method used in SSH. On the positive side we show that the authenticate-then-encrypt method is secure if the encryption method in use is either CBC mode (with an underlying secure block cipher) or a stream cipher (that xor the data with a random or pseudorandom pad). Thus, while we show the generic security of SSL to be broken, the current practical implementations of the protocol that use the above modes of encryption are safe.

456 citations

Book ChapterDOI
20 Jan 1997
TL;DR: This work presents a new mode of encryption for block ciphers that has the interesting defining property that one must decrypt the entire ciphertext before one can determine even one message block, which means that brute-force searches against all-or-nothing encryption are slowed down by a factor equal to the number of blocks in the ciphertext.
Abstract: We present a new mode of encryption for block ciphers, which we call all-or-nothing encryption This mode has the interesting defining property that one must decrypt the entire ciphertext before one can determine even one message block This means that brute-force searches against all-or-nothing encryption are slowed down by a factor equal to the number of blocks in the ciphertext We give a specific way of implementing all-or-nothing encryption using a “package transform≓ as a pre-processing step to an ordinary encryption mode A package transform followed by ordinary codebook encryption also has the interesting property that it is very efficiently implemented in parallel All-or-nothing encryption can also provide protection against chosen-plaintext and related-message attacks

450 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed to introduce a certain diffusion effect in the substitution stage by simple sequential add-and-shift operations, which leads to a longer processing time in a single round, but reduces the overall encryption time.

403 citations


Network Information
Related Topics (5)
Encryption
98.3K papers, 1.4M citations
90% related
Cryptography
37.3K papers, 854.5K citations
89% related
Public-key cryptography
27.2K papers, 547.7K citations
88% related
Hash function
31.5K papers, 538.5K citations
87% related
Key (cryptography)
60.1K papers, 659.3K citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202318
202230
20211
20202
20194
201822