scispace - formally typeset
Search or ask a question
Topic

Plane stress

About: Plane stress is a research topic. Over the lifetime, 13340 publications have been published within this topic receiving 326253 citations.


Papers
More filters
Journal ArticleDOI
James R. Rice1
TL;DR: In this paper, an integral is exhibited which has the same value for all paths surrounding a class of notches in two-dimensional deformation fields of linear or non-linear elastic materials.
Abstract: : An integral is exhibited which has the same value for all paths surrounding a class of notches in two-dimensional deformation fields of linear or non-linear elastic materials. The integral may be evaluated almost by inspection for a few notch configurations. Also, for materials of the elastic- plastic type (treated through a deformation rather than incremental formulation) , with a linear response to small stresses followed by non-linear yielding, the integral may be evaluated in terms of Irwin's stress intensity factor when yielding occurs on a scale small in comparison to notch size. On the other hand, the integral may be expressed in terms of the concentrated deformation field in the vicinity of the notch tip. This implies that some information on strain concentrations is obtainable without recourse to detailed non-linear analyses. Such an approach is exploited here. Applications are made to: Approximate estimates of strain concentrations at smooth ended notch tips in elastic and elastic-plastic materials, A general solution for crack tip separation in the Barenblatt-Dugdale crack model, leading to a proof of the identity of the Griffith theory and Barenblatt cohesive theory for elastic brittle fracture and to the inclusion of strain hardening behavior in the Dugdale model for plane stress yielding, and An approximate perfectly plastic plane strain analysis, based on the slip line theory, of contained plastic deformation at a crack tip and of crack blunting.

7,468 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the C rack-tip strain singularities with the aid of an energy line integral exhibiting path independence for all contours surrounding a crack tip in a two-dimensional deformation field of an elastic material (or elastic/plastic material treated by a deformation theory).
Abstract: C rack-tip strain singularities are investigated with the aid of an energy line integral exhibiting path independence for all contours surrounding a crack tip in a two-dimensional deformation field of an elastic material (or elastic/plastic material treated by a deformation theory). It is argued that the product of stress and strain exhibits a singularity varying inversely with distance from the tip in all materials. Corresponding near crack tip stress and strain fields are obtained for the plane straining of an incompressible elastic/plastic material hardening according to a power law. A noteworthy feature of the solution is the rapid rise of triaxial stress concentration above the flow stress with increasing values of the hardening exponent. Results are presented graphically for a range of hardening exponents, and the interpretation of the solution is aided by a discussion of analogous results in the better understood anti-plane strain case.

2,890 citations

Journal ArticleDOI
TL;DR: In this paper, a total deformation theory of plasticity, in conjunction with two hardening stress-strain relations, is used to determine the dominant singularity at the tip of a crack in a tension field.
Abstract: D istributions of stress occurring at the tip of a crack in a tension field are presented for both plane stress and plane strain. A total deformation theory of plasticity, in conjunction with two hardening stress-strain relations, is used. For applied stress sufficiently low such that the plastic zone is very small relative to the crack length, the dominant singularity can be completely determined with the aid of a path-independent line integral recently given by rice (1967). The amplitude of the tensile stress singularity ahead of the crack is found to be larger in plane strain than in plane stress.

2,667 citations

Journal ArticleDOI
TL;DR: In this article, a model of dynamic crack growth is presented for a plane strain block with an initial central crack subject to tensile loading, where crack branching emerges as a natural outcome of the initial-boundary value problem solution, without any ad hoc assumption regarding branching criteria.
Abstract: Dynamic crack growth is analysed numerically for a plane strain block with an initial central crack subject to tensile loading. The continuum is characterized by a material constitutive law that relates stress and strain, and by a relation between the tractions and displacement jumps across a specified set of cohesive surfaces. The material constitutive relation is that of an isotropic hyperelastic solid. The cohesive surface constitutive relation allows for the creation of new free surface and dimensional considerations introduce a characteristic length into the formulation. Full transient analyses are carried out. Crack branching emerges as a natural outcome of the initial-boundary value problem solution, without any ad hoc assumption regarding branching criteria. Coarse mesh calculations are used to explore various qualitative features such as the effect of impact velocity on crack branching, and the effect of an inhomogeneity in strength, as in crack growth along or up to an interface. The effect of cohesive surface orientation on crack path is also explored, and for a range of orientations zigzag crack growth precedes crack branching. Finer mesh calculations are carried out where crack growth is confined to the initial crack plane. The crack accelerates and then grows at a constant speed that, for high impact velocities, can exceed the Rayleigh wave speed. This is due to the finite strength of the cohesive surfaces. A fine mesh calculation is also carried out where the path of crack growth is not constrained. The crack speed reaches about 45% of the Rayleigh wave speed, then the crack speed begins to oscillate and crack branching at an angle of about 29° from the initial crack plane occurs. The numerical results are at least qualitatively in accord with a wide variety of experimental observations on fast crack growth in brittle solids.

2,233 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
92% related
Finite element method
178.6K papers, 3M citations
89% related
Stress (mechanics)
69.5K papers, 1.1M citations
86% related
Ultimate tensile strength
129.2K papers, 2.1M citations
83% related
Shear stress
35.9K papers, 906.8K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202389
2022212
2021288
2020297
2019273
2018333