scispace - formally typeset
Search or ask a question
Topic

Planetary boundaries

About: Planetary boundaries is a research topic. Over the lifetime, 708 publications have been published within this topic receiving 37068 citations.


Papers
More filters
Journal ArticleDOI
23 Sep 2009-Nature
TL;DR: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.
Abstract: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.

8,837 citations

Journal ArticleDOI
13 Feb 2015-Science
TL;DR: An updated and extended analysis of the planetary boundary (PB) framework and identifies levels of anthropogenic perturbations below which the risk of destabilization of the Earth system (ES) is likely to remain low—a “safe operating space” for global societal development.
Abstract: The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.

7,169 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new approach to global sustainability in which they define planetary boundaries within which they expect that humanity can operate safely. But the proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development.
Abstract: Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere <350 ppm and/or a maximum change of +1 W m-2 in radiative forcing); ocean acidification (mean surface seawater saturation state with respect to aragonite ≥ 80% of pre-industrial levels); stratospheric ozone (<5% reduction in O3 concentration from pre-industrial level of 290 Dobson Units); biogeochemical nitrogen (N) cycle (limit industrial and agricultural fixation of N2 to 35 Tg N yr-1) and phosphorus (P) cycle (annual P inflow to oceans not to exceed 10 times the natural background weathering of P); global freshwater use (<4000 km3 yr-1 of consumptive use of runoff resources); land system change (<15% of the ice-free land surface under cropland); and the rate at which biological diversity is lost (annual rate of <10 extinctions per million species). The two additional planetary boundaries for which we have not yet been able to determine a boundary level are chemical pollution and atmospheric aerosol loading. We estimate that humanity has already transgressed three planetary boundaries: for climate change, rate of biodiversity loss, and changes to the global nitrogen cycle. Planetary boundaries are interdependent, because transgressing one may both shift the position of other boundaries or cause them to be transgressed. The social impacts of transgressing boundaries will be a function of the social-ecological resilience of the affected societies. Our proposed boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure of avoiding major human-induced environmental change on a global scale.

4,771 citations

Journal ArticleDOI
10 Oct 2018-Nature
TL;DR: A global model finds that the environmental impacts of the food system could increase by 60–90% by 2050, and that dietary changes, improvements in technologies and management, and reductions in food loss and waste will all be needed to mitigate these impacts.
Abstract: The food system is a major driver of climate change, changes in land use, depletion of freshwater resources, and pollution of aquatic and terrestrial ecosystems through excessive nitrogen and phosphorus inputs. Here we show that between 2010 and 2050, as a result of expected changes in population and income levels, the environmental effects of the food system could increase by 50–90% in the absence of technological changes and dedicated mitigation measures, reaching levels that are beyond the planetary boundaries that define a safe operating space for humanity. We analyse several options for reducing the environmental effects of the food system, including dietary changes towards healthier, more plant-based diets, improvements in technologies and management, and reductions in food loss and waste. We find that no single measure is enough to keep these effects within all planetary boundaries simultaneously, and that a synergistic combination of measures will be needed to sufficiently mitigate the projected increase in environmental pressures.

1,521 citations

Journal ArticleDOI
TL;DR: In this article, the Anthropocene epoch has been formally recognized as a new epoch in Earth history, arguing that the advent of the Industrial Revolution around 1800 provides a logical start date for the new epoch.
Abstract: The human imprint on the global environment has now become so large and active that it rivals some of the great forces of Nature in its impact on the functioning of the Earth system. Although global-scale human influence on the environment has been recognized since the 1800s, the term Anthropocene, introduced about a decade ago, has only recently become widely, but informally, used in the global change research community. However, the term has yet to be accepted formally as a new geological epoch or era in Earth history. In this paper, we put forward the case for formally recognizing the Anthropocene as a new epoch in Earth history, arguing that the advent of the Industrial Revolution around 1800 provides a logical start date for the new epoch. We then explore recent trends in the evolution of the Anthropocene as humanity proceeds into the twenty-first century, focusing on the profound changes to our relationship with the rest of the living world and on early attempts and proposals for managing our relationship with the large geophysical cycles that drive the Earth's climate system.

1,484 citations


Network Information
Related Topics (5)
Global warming
36.6K papers, 1.6M citations
78% related
Climate change
99.2K papers, 3.5M citations
78% related
Sustainability
129.3K papers, 2.5M citations
77% related
Corporate governance
118.5K papers, 2.7M citations
75% related
Greenhouse gas
44.9K papers, 1.3M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202345
2022112
2021115
202098
2019100
201879