scispace - formally typeset
Search or ask a question
Topic

Plankton

About: Plankton is a research topic. Over the lifetime, 10029 publications have been published within this topic receiving 409239 citations.


Papers
More filters
Book
01 Jan 1975
TL;DR: The Ontogeny of Inland Aquatic Ecosystmes: Understanding is Essential for the Future References Appendix Index as discussed by the authors The ontogeny is essential for the future.
Abstract: Preface 1 Prologue 2 Water as a Substance 3 Rivers and Lakes - Their Distribution, Origins, and Forms 4 Water Economy 5 Light in Inland Waters 6 Fate of Heat 7 Water Movements 8 Structure and Productivity of Aquatic Ecosystems 9 Oxygen 10 Salinity of Inland Waters 11 The Inorganic Carbon Complex 12 The Nitrogen Cycle 13 The Phosphorus Cycle 14 Iron, Sulfer, and Silica Cycles 15 Planktonic Communities: Algae and Cyanobacteria 16 Plantonic Communities: Zooplankton and their Interactions with Fish 17 Bacterioplankton 18 Land-Water Interfaces: Larger Plants 19 Land-Water Interfaces: Attached Microorganisms, Littoral Algae, and Zooplankton 20 Shallow Lakes and Ponds 21 Sediments and Microflora 22 Benthic Animals and Fish Communities 23 Detrirus: Organic Carbon Cycling and Ecosystem Metabolism 24 Past Productivity: Paleolimnology 25 The Ontogeny of Inland Aquatic Ecosystmes 26 Inland waters: Understanding is Essential for the Future References Appendix Index

5,172 citations

Journal ArticleDOI
TL;DR: Evidence is presented to suggest that numbers of free bacteria are controlled by nanoplankton~c heterotrophic flagellates which are ubiquitous in the marine water column, thus providing the means for returning some energy from the 'microbial loop' to the conventional planktonic food chain.
Abstract: Recently developed techniques for estimating bacterial biomass and productivity indicate that bacterial biomass in the sea is related to phytoplankton concentration and that bacteria utilise 10 to 50 % of carbon fixed by photosynthesis. Evidence is presented to suggest that numbers of free bacteria are controlled by nanoplankton~c heterotrophic flagellates which are ubiquitous in the marine water column. The flagellates in turn are preyed upon by microzooplankton. Heterotrophic flagellates and microzooplankton cover the same size range as the phytoplankton, thus providing the means for returning some energy from the 'microbial loop' to the conventional planktonic food chain.

5,069 citations

Journal ArticleDOI
01 Oct 1965-Science
TL;DR: The effect of a marine planktivore on lake plankton illustrates theory of size, competition, and predation.
Abstract: ARTICLES Organic Fluorine Chemistry: C. G. Krespai.................................. Expanding rapidly, the science of these compounds has assumed both theoretical and practical importance. The Biological Synthesis of Cholesterol: K. Bloch .............................. Predation, Body Size, and Con-mposition of Plankton: J. L. Brooks and S. I. Dodson ... The effect of a marine planktivore on lake plankton illustrates theory of size, competition, and predation. 7

3,156 citations

Journal ArticleDOI
TL;DR: The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research as mentioned in this paper, and both are only imperfect analogs to current conditions.
Abstract: Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.

2,995 citations

Journal ArticleDOI
TL;DR: The relationship between harmful algal blooms and eutrophication of coastal waters from human activities has been investigated in this paper, focusing on sources of nutrients, known effects of nutrient loading and reduction, new understanding of pathways of nutrient acquisition among HAB species, and relationships between nutrients and toxic algae.
Abstract: Although algal blooms, including those considered toxic or harmful, can be natural phenomena, the nature of the global problem of harmful algal blooms (HABs) has expanded both in extent and its public perception over the last several decades. Of concern, especially for resource managers, is the potential relationship between HABs and the accelerated eutrophication of coastal waters from human activities. We address current insights into the relationships between HABs and eutrophication, focusing on sources of nutrients, known effects of nutrient loading and reduction, new understanding of pathways of nutrient acquisition among HAB species, and relationships between nutrients and toxic algae. Through specific, regional, and global examples of these various relationships, we offer both an assessment of the state of understanding, and the uncertainties that require future research efforts. The sources of nutrients poten- tially stimulating algal blooms include sewage, atmospheric deposition, groundwater flow, as well as agricultural and aquaculture runoff and discharge. On a global basis, strong correlations have been demonstrated between total phos- phorus inputs and phytoplankton production in freshwaters, and between total nitrogen input and phytoplankton pro- duction in estuarine and marine waters. There are also numerous examples in geographic regions ranging from the largest and second largest U.S. mainland estuaries (Chesapeake Bay and the Albemarle-Pamlico Estuarine System), to the Inland Sea of Japan, the Black Sea, and Chinese coastal waters, where increases in nutrient loading have been linked with the development of large biomass blooms, leading to anoxia and even toxic or harmful impacts on fisheries re- sources, ecosystems, and human health or recreation. Many of these regions have witnessed reductions in phytoplankton biomass (as chlorophyll a) or HAB incidence when nutrient controls were put in place. Shifts in species composition have often been attributed to changes in nutrient supply ratios, primarily N:P or N:Si. Recently this concept has been extended to include organic forms of nutrients, and an elevation in the ratio of dissolved organic carbon to dissolved organic nitrogen (DOC:DON) has been observed during several recent blooms. The physiological strategies by which different groups of species acquire their nutrients have become better understood, and alternate modes of nutrition such as heterotrophy and mixotrophy are now recognized as common among HAB species. Despite our increased un- derstanding of the pathways by which nutrients are delivered to ecosystems and the pathways by which they are assimilated differentially by different groups of species, the relationships between nutrient delivery and the development of blooms and their potential toxicity or harmfulness remain poorly understood. Many factors such as algal species presence/ abundance, degree of flushing or water exchange, weather conditions, and presence and abundance of grazers contribute to the success of a given species at a given point in time. Similar nutrient loads do not have the same impact in different environments or in the same environment at different points in time. Eutrophication is one of several mechanisms by which harmful algae appear to be increasing in extent and duration in many locations. Although important, it is not the only explanation for blooms or toxic outbreaks. Nutrient enrichment has been strongly linked to stimulation of some harmful species, but for others it has not been an apparent contributing factor. The overall effect of nutrient over- enrichment on harmful algal species is clearly species specific.

2,500 citations


Network Information
Related Topics (5)
Phytoplankton
24.6K papers, 930.1K citations
97% related
Benthic zone
23.1K papers, 763.9K citations
96% related
Coral reef
17.2K papers, 696.8K citations
90% related
Trophic level
15.6K papers, 662.3K citations
89% related
Sediment
48.7K papers, 1.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023527
20221,111
2021336
2020294
2019364
2018330