scispace - formally typeset
Search or ask a question

Showing papers on "Plant disease resistance published in 2011"


Journal ArticleDOI
TL;DR: Although new Ug99-resistant varieties that yield more than current popular varieties are being released and promoted, major efforts are required to displace current Ug99 susceptible varieties with varieties that have diverse race-specific or durable resistance and mitigate the Ug99 threat.
Abstract: Race Ug99 of the fungus Puccinia graminis tritici that causes stem or black rust disease on wheat was first detected in Uganda in 1998. Seven races belonging to the Ug99 lineage are now known and have spread to various wheat-growing countries in the eastern African highlands, as well as Zimbabwe, South Africa, Sudan, Yemen, and Iran. Because of the susceptibility of 90% of the wheat varieties grown worldwide, the Ug99 group of races was recognized as a major threat to wheat production and food security. Its spread, either wind-mediated or human-aided, to other countries in Africa, Asia, and beyond is evident. Screening in Kenya and Ethiopia has identified a low frequency of resistant wheat varieties and breeding materials. Identification and transfer of new sources of race-specific resistance from various wheat relatives is underway to enhance the diversity of resistance. Although new Ug99-resistant varieties that yield more than current popular varieties are being released and promoted, major efforts are required to displace current Ug99 susceptible varieties with varieties that have diverse race-specific or durable resistance and mitigate the Ug99 threat.

628 citations


Journal ArticleDOI
TL;DR: Genome-wide nested association mapping, using 1.6 million SNPs, identified multiple candidate genes related to plant defense, including receptor-like kinase genes similar to those involved in basal defense, consistent with the hypothesis that quantitative disease resistance in plants is conditioned by a range of mechanisms and could have considerable mechanistic overlap with basal resistance.
Abstract: Quantitative resistance to plant pathogens, controlled by multiple loci of small effect, is important for food production, food security, and food safety but is poorly understood. To gain insights into the genetic architecture of quantitative resistance in maize, we evaluated a 5,000-inbred-line nested association mapping population for resistance to northern leaf blight, a maize disease of global economic importance. Twenty-nine quantitative trait loci were identified, and most had multiple alleles. The large variation in resistance phenotypes could be attributed to the accumulation of numerous loci of small additive effects. Genome-wide nested association mapping, using 1.6 million SNPs, identified multiple candidate genes related to plant defense, including receptor-like kinase genes similar to those involved in basal defense. These results are consistent with the hypothesis that quantitative disease resistance in plants is conditioned by a range of mechanisms and could have considerable mechanistic overlap with basal resistance.

375 citations


Journal ArticleDOI
TL;DR: It is demonstrated that genetic variability among wild and cultivated tomato lines affects the outcome of the interaction with two 'elite' biocontrol strains of T. atroviride and T. harzianum, and the ability of the plant to benefit from this symbiotic-like interaction can be genetically improved.
Abstract: SUMMARY Rhizosphere-competent fungi of the genus Trichoderma are widely used as biofertilizers and biopesticides in commercial formulates because of the multiple beneficial effects on plant growth and disease resistance. In this work, we demonstrate that genetic variability among wild and cultivated tomato lines affects the outcome of the interaction with two ‘elite’ biocontrol strains of T. atroviride and T. harzianum.The beneficial response, which included enhanced growth and systemic resistance againstBotrytis cinerea,was clearly evident for some,but not all, the tested lines.At least in one case (line M82), treatment with the biocontrol agents had no effect or was even detrimental. Expression studies on defence-related genes suggested that the fungus is able to trigger, in the responsive lines, a long-lasting up-regulation of the salicylic acid pathway in the absence of a pathogen,possibly activating a priming mechanism in the plant. Consequently, infection with B. cinerea on plants pretreated with Trichoderma is followed by enhanced activation of jasmonate-responsive genes, eventually boosting systemic resistance to the pathogen in a plant genotype-dependent manner. Our data indicate that, at least in tomato, the Trichoderma induced systemic resistance mechanism is much more complex than considered so far, and the ability of the plant to benefit from this symbiotic-like interaction can be genetically improved.

282 citations


Journal ArticleDOI
TL;DR: The results demonstrate that Arabidopsis can be used as model to unravel the genetics of Ve1-mediated resistance and show that signaling components utilized by Ve1 inArabidopsis to establish Verticillium resistance overlap with those required in tomato and include SERK3/BAK1, EDS1, and NDR1, which strongly suggests that critical components for resistance signaling are conserved.
Abstract: Vascular wilts caused by soil-borne fungal species of the Verticillium genus are devastating plant diseases. The most common species, Verticillium dahliae and Verticillium albo-atrum, have broad host ranges and are notoriously difficult to control. Therefore, genetic resistance is the preferred method for disease control. Only from tomato (Solanum lycopersicum) has a Verticillium resistance locus been cloned, comprising the Ve1 gene that encodes a receptor-like protein-type cell surface receptor. Due to lack of a suitable model for receptor-like protein (RLP)-mediated resistance signaling in Arabidopsis (Arabidopsis thaliana), so far relatively little is known about RLP signaling in pathogen resistance. Here, we show that Ve1 remains fully functional after interfamily transfer to Arabidopsis and that Ve1-transgenic Arabidopsis is resistant to race 1 but not to race 2 strains of V. dahliae and V. albo-atrum, nor to the Brassicaceae-specific pathogen Verticillium longisporum. Furthermore, we show that signaling components utilized by Ve1 in Arabidopsis to establish Verticillium resistance overlap with those required in tomato and include SERK3/BAK1, EDS1, and NDR1, which strongly suggests that critical components for resistance signaling are conserved. We subsequently investigated the requirement of SERK family members for Ve1 resistance in Arabidopsis, revealing that SERK1 is required in addition to SERK3/BAK1. Using virus-induced gene silencing, the requirement of SERK1 for Ve1-mediated resistance was confirmed in tomato. Moreover, we show the requirement of SERK1 for resistance against the foliar fungal pathogen Cladosporium fulvum mediated by the RLP Cf-4. Our results demonstrate that Arabidopsis can be used as model to unravel the genetics of Ve1-mediated resistance.

252 citations


Journal ArticleDOI
TL;DR: The common wheat genotype ‘RL6077’ was believed to carry the gene Lr34/Yr18 that confers slow-rusting adult plant resistance (APR) to leaf rust and stripe rust but located to a different chromosome through inter-chromosomal reciprocal translocation, but haplotyping and complete sequencing of the gene indicated it is absent in RL6077.
Abstract: The common wheat genotype ‘RL6077’ was believed to carry the gene Lr34/Yr18 that confers slow-rusting adult plant resistance (APR) to leaf rust and stripe rust but located to a different chromosome through inter-chromosomal reciprocal translocation. However, haplotyping using the cloned Lr34/Yr18 diagnostic marker and the complete sequencing of the gene indicated Lr34/Yr18 is absent in RL6077. We crossed RL6077 with the susceptible parent ‘Avocet’ and developed F3, F4 and F6 populations from photoperiod-insensitive F3 lines that were segregating for resistance to leaf rust and stripe rust. The populations were characterized for leaf rust resistance at two Mexican sites, Cd. Obregon during the 2008–2009 and 2009–2010 crop seasons, and El Batan during 2009, and for stripe rust resistance at Toluca, a third Mexican site, during 2009. The F3 population was also evaluated for stripe rust resistance at Cobbitty, Australia, during 2009. Most lines had correlated responses to leaf rust and stripe rust, indicating that either the same gene, or closely linked genes, confers resistance to both diseases. Molecular mapping using microsatellites led to the identification of five markers (Xgwm165, Xgwm192, Xcfd71, Xbarc98 and Xcfd23) on chromosome 4DL that are associated with this gene(s), with the closest markers being located at 0.4 cM. In a parallel study in Canada using a Thatcher × RL6077 F3 population, the same leaf rust resistance gene was designated as Lr67 and mapped to the same chromosomal region. The pleiotropic, or closely linked, gene derived from RL6077 that conferred stripe rust resistance in this study was designated as Yr46. The slow-rusting gene(s) Lr67/Yr46 can be utilized in combination with other slow-rusting genes to develop high levels of durable APR to leaf rust and stripe rust in wheat.

244 citations


Journal ArticleDOI
TL;DR: It is expected that, regulated by a pathogen-induced strong promoter, GH3-2 alone may be used for breeding rice with a broad-spectrum disease resistance.
Abstract: Breeding crops with the quality of broad-spectrum disease resistance using genetic resources is one of the principal goals of crop improvement. However, the molecular mechanism of broad-spectrum resistance remains largely unknown. Here, we show that GH3-2, encoding an indole-3-acetic acid (IAA)-amido synthetase, mediates a broad-spectrum resistance to bacterial Xanthomonas oryzae pv oryzae and Xanthomonas oryzae pv oryzicola and fungal Magnaporthe grisea in rice (Oryza sativa). IAA, the major form of auxin in rice, results in rice more vulnerable to the invasion of different types of pathogens, which is at least partly due to IAA-induced loosening of the cell wall, the natural protective barrier of plant cells to invaders. X. oryzae pv oryzae, X. oryzae pv oryzicola, and M. grisea secrete IAA, which, in turn, may induce rice to synthesize its own IAA at the infection site. IAA induces the production of expansins, the cell wall-loosening proteins, and makes rice vulnerable to pathogens. GH3-2 is likely contributing to a minor quantitative trait locus for broad-spectrum resistance. Activation of GH3-2 inactivates IAA by catalyzing the formation of an IAA-amino acid conjugate, which results in the suppression of expansin genes. Thus, GH3-2 mediates basal resistance by suppressing pathogen-induced IAA accumulation. It is expected that, regulated by a pathogen-induced strong promoter, GH3-2 alone may be used for breeding rice with a broad-spectrum disease resistance.

225 citations


Journal ArticleDOI
TL;DR: The characterization of another recessive resistance gene, xa25, for Xoo resistance, which mediates race-specific resistance to Xoo strain PXO339 at both seedling and adult stages by inhibiting Xoo growth encodes a protein of the MtN3/saliva family, which is prevalent in eukaryotes, including mammals.
Abstract: Approximately one third of the identified 34 rice major disease resistance (R) genes conferring race-specific resistance to different strains of Xanthomonas oryzae pv. oryzae (Xoo), which causes rice bacterial blight disease, are recessive genes. However, only two of the recessive resistance genes have been characterized thus far. Here we report the characterization of another recessive resistance gene, xa25, for Xoo resistance. The xa25, localized in the centromeric region of chromosome 12, mediates race-specific resistance to Xoo strain PXO339 at both seedling and adult stages by inhibiting Xoo growth. It encodes a protein of the MtN3/saliva family, which is prevalent in eukaryotes, including mammals. Transformation of the dominant Xa25 into a resistant rice line carrying the recessive xa25 abolished its resistance to PXO339. The encoding proteins of recessive xa25 and its dominant allele Xa25 have eight amino acid differences. The expression of dominant Xa25 but not recessive xa25 was rapidly induced by PXO339 but not other Xoo strain infections. The nature of xa25-encoding protein and its expression pattern in comparison with its susceptible allele in rice-Xoo interaction indicate that the mechanism of xa25-mediated resistance appears to be different from that conferred by most of the characterized R proteins.

194 citations


Journal ArticleDOI
TL;DR: High frequencies of lines with near-immunity to moderate levels of resistance are now emerging from breeding varieties that posses adult plant resistance (APR) based on combinations of minor, slow rusting genes in CIMMYT spring wheats.
Abstract: Rust diseases continue to cause significant losses to wheat production worldwide. Although the life of effective race-specific resistance genes can be prolonged by using gene combinations, an alternative approach is to deploy varieties that posses adult plant resistance (APR) based on combinations of minor, slow rusting genes. When present alone, APR genes do not confer adequate resistance especially under high disease pressure; however, combinations of 4–5 such genes usually result in “near-immunity” or a high level of resistance. Although high diversity for APR occurs for all three rusts in improved germplasm, relatively few genes are characterized in detail. Breeding for APR to leaf rust and stripe rust in CIMMYT spring wheats was initiated in the early 1970s by crossing slow rusting parents that lacked effective race-specific resistance genes to prevalent pathogen populations and selecting plants in segregating populations under high disease pressure in field nurseries. Consequently most of the wheat germplasm distributed worldwide now possesses near-immunity or adequate levels of resistance. Some semidwarf wheats such as Kingbird, Pavon 76, Kiritati and Parula show high levels of APR to stem rust race Ug99 and its derivatives based on the Sr2-complex, or a combination of Sr2 with other uncharacterized slow rusting genes. These parents are being utilized in our crossing program and a Mexico-Kenya shuttle breeding scheme is used for selecting resistance to Ug99. High frequencies of lines with near-immunity to moderate levels of resistance are now emerging from these activities. After further yield trials and quality assessments these lines will be distributed internationally through the CIMMYT nursery system.

188 citations


Journal ArticleDOI
TL;DR: A cleaved amplified polymorphic sequence (CAPS) marker is developed that is associated with the presence or absence of the Sr2 gene in 115 of 122 diverse wheat lines and provides breeders with a selection tool for one of the most important disease resistance genes of wheat.
Abstract: The stem rust resistance gene Sr2 has provided broad-spectrum protection against stem rust (Puccinia graminis Pers. f. sp. tritici) since its wide spread deployment in wheat from the 1940s. Because Sr2 confers partial resistance which is difficult to select under field conditions, a DNA marker is desirable that accurately predicts Sr2 in diverse wheat germplasm. Using DNA sequence derived from the vicinity of the Sr2 locus, we developed a cleaved amplified polymorphic sequence (CAPS) marker that is associated with the presence or absence of the gene in 115 of 122 (95%) diverse wheat lines. The marker genotype predicted the absence of the gene in 100% of lines which were considered to lack Sr2. Discrepancies were observed in lines that were predicted to carry Sr2 but failed to show the CAPS marker. Given the high level of accuracy observed, the marker provides breeders with a selection tool for one of the most important disease resistance genes of wheat.

173 citations


Journal ArticleDOI
TL;DR: A novel transgenic approach enabling autoregulated cytokinin synthesis in response to pathogen infection showed that cytokinins mediate enhanced resistance against the virulent hemibiotrophic pathogen Pseudomonas syringae pv tabaci.
Abstract: Cytokinins are phytohormones that are involved in various regulatory processes throughout plant development, but they are also produced by pathogens and known to modulate plant immunity A novel transgenic approach enabling autoregulated cytokinin synthesis in response to pathogen infection showed that cytokinins mediate enhanced resistance against the virulent hemibiotrophic pathogen Pseudomonas syringae pv tabaci This was confirmed by two additional independent transgenic approaches to increase endogenous cytokinin production and by exogenous supply of adenine- and phenylurea-derived cytokinins The cytokinin-mediated resistance strongly correlated with an increased level of bactericidal activities and up-regulated synthesis of the two major antimicrobial phytoalexins in tobacco (Nicotiana tabacum), scopoletin and capsidiol The key role of these phytoalexins in the underlying mechanism was functionally proven by the finding that scopoletin and capsidiol substitute in planta for the cytokinin signal: phytoalexin pretreatment increased resistance against P syringae In contrast to a cytokinin defense mechanism in Arabidopsis (Arabidopsis thaliana) based on salicylic acid-dependent transcriptional control, the cytokinin-mediated resistance in tobacco is essentially independent from salicylic acid and differs in pathogen specificity It is also independent of jasmonate levels, reactive oxygen species, and high sugar resistance The novel function of cytokinins in the primary defense response of solanaceous plant species is rather mediated through a high phytoalexin-pathogen ratio in the early phase of infection, which efficiently restricts pathogen growth The implications of this mechanism for the coevolution of host plants and cytokinin-producing pathogens and the practical application in agriculture are discussed

170 citations


Journal ArticleDOI
TL;DR: This paper used a polymerase chain reaction (PCR)-based approach to amplify a candidate MLO cDNA from wild-type pea (Pisum sativum) er1 plants and showed that the loss of PsMLO1 function conditions durable broad-spectrum powdery mildew resistance in pea.
Abstract: Loss-of-function alleles of plant-specific MLO (Mildew Resistance Locus O) genes confer broad-spectrum powdery mildew resistance in monocot (barley) and dicot (Arabidopsis thaliana, tomato) plants. Recessively inherited powdery mildew resistance in pea (Pisum sativum) er1 plants is, in many aspects, reminiscent of mlo-conditioned powdery mildew immunity, yet the underlying gene has remained elusive to date. We used a polymerase chain reaction (PCR)-based approach to amplify a candidate MLO cDNA from wild-type (Er1) pea. Sequence analysis of the PsMLO1 candidate gene in two natural er1 accessions from Asia and two er1-containing pea cultivars with a New World origin revealed, in each case, detrimental nucleotide polymorphisms in PsMLO1, suggesting that PsMLO1 is Er1. We corroborated this hypothesis by restoration of susceptibility on transient expression of PsMLO1 in the leaves of two resistant er1 accessions. Orthologous legume MLO genes from Medicago truncatula and Lotus japonicus likewise complemented the er1 phenotype. All tested er1 genotypes showed unaltered colonization with the arbuscular mycorrhizal fungus, Glomus intraradices, and with nitrogen-fixing rhizobial bacteria. Our data demonstrate that PsMLO1 is Er1 and that the loss of PsMLO1 function conditions durable broad-spectrum powdery mildew resistance in pea.

Journal ArticleDOI
TL;DR: Evidence is presented that peptides belonging to the Pep family have a conserved function across plant species as endogenous regulators of innate immunity and may have potential for enhancing disease resistance in crops.
Abstract: ZmPep1 is a bioactive peptide encoded by a previously uncharacterized maize (Zea mays) gene, ZmPROPEP1. ZmPROPEP1 was identified by sequence similarity as an ortholog of the Arabidopsis (Arabidopsis thaliana) AtPROPEP1 gene, which encodes the precursor protein of elicitor peptide 1 (AtPep1). Together with its receptors, AtPEPR1 and AtPEPR2, AtPep1 functions to activate and amplify innate immune responses in Arabidopsis and enhances resistance to both Pythium irregulare and Pseudomonas syringae. Candidate orthologs to the AtPROPEP1 gene have been identified from a variety of crop species; however, prior to this study, activities of the respective peptides encoded by these orthologs were unknown. Expression of the ZmPROPEP1 gene is induced by fungal infection and treatment with jasmonic acid or ZmPep1. ZmPep1 activates de novo synthesis of the hormones jasmonic acid and ethylene and induces the expression of genes encoding the defense proteins endochitinase A, PR-4, PRms, and SerPIN. ZmPep1 also stimulates the expression of Benzoxazineless1, a gene required for the biosynthesis of benzoxazinoid defenses, and the accumulation of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside in leaves. To ascertain whether ZmPep1-induced defenses affect resistance, maize plants were pretreated with the peptide prior to infection with fungal pathogens. Based on cell death and lesion severity, ZmPep1 pretreatment was found to enhance resistance to both southern leaf blight and anthracnose stalk rot caused by Cochliobolis heterostrophus and Colletotrichum graminicola, respectively. We present evidence that peptides belonging to the Pep family have a conserved function across plant species as endogenous regulators of innate immunity and may have potential for enhancing disease resistance in crops.

Journal ArticleDOI
TL;DR: Current literature on natural plant–pathogen associations is reviewed to determine how diversity in disease resistance is distributed at different hierarchical levels – within host individuals, within host populations, amongst host populations at the metapopulation scale and at larger regional scales.
Abstract: Variation in disease resistance is a widespread phenomenon in wild plant-pathogen associations. Here, we review current literature on natural plant-pathogen associations to determine how diversity in disease resistance is distributed at different hierarchical levels – within host individuals, within host populations, among host populations at the metapopulation scale and at larger regional scales. We find diversity in resistance across all spatial scales examined. Furthermore, variability seems to be the best counter-defence of plants against their rapidly evolving pathogens. We find that higher diversity of resistance phenotypes also results in higher levels of resistance at the population level. Overall, we find that wild plant populations are more likely to be susceptible than resistant to their pathogens. However, the degree of resistance differs strikingly depending on the origin of the pathogen strains used in experimental inoculation studies. Plant populations are on average 16% more resistant to allopatric pathogen strains than they are to strains that occur within the same population (48 % vs. 32 % respectively). Pathogen dispersal mode affects levels of resistance in natural plant populations with lowest levels detected for hosts of airborne pathogens and highest for waterborne pathogens. Detailed analysis of two model systems, Linum marginale infected by Melampsora lini, and Plantago lanceolata infected by Podosphaera plantaginis, show that the amount of variation in disease resistance declines towards higher spatial scales as we move from individual hosts to metapopulations, but evaluation of multiple spatial scales is needed to fully capture the structure of disease resistance. Synthesis: Variation in disease resistance is ubiquitous in wild plant-pathogen associations. While the debate over whether the resistance structure of plant populations is determined by pathogen-imposed selection versus non-adaptive processes remains unresolved, we do report examples of pathogen-imposed selection on host resistance. Here we highlight the importance of measuring resistance across multiple spatial scales, and of using sympatric strains when looking for signs of coevolution in wild plant-pathogen interactions. Keywords: Coevolution, host-parasite interactions, life-history, metapopulation dynamics, gene-for-gene, major resistance, sympatric, disease resistance, epidemiology Introduction How plant resistance to disease is distributed across space can affect fundamental components of disease biology and epidemiology. Ultimately the resistance structure of plant populations will determine where pathogens occur, as a pathogen can only infect hosts whose defence strategies it can overcome. Furthermore, host resistance may be considered the main driving force of pathogen evolution, with pathogens evolving to overcome host resistance strategies. This process is believed to be reciprocal so hosts and their pathogens are engaged in a co-evolutionary arms-race with hosts evolving new counter defences to escape attack, and pathogens in turn evolving to overcome these new forms of resistance (e.g. Clay & Kover 1996). The interaction between hosts and pathogens is characterized by a great disparity in genome size, generation time and speed of adaptability which, on the surface, would generally appear to favour the pathogen. Indeed, there are numerous examples of pathogens adapting to their hosts, both from studies of local adaptation (Parker 1985; Thrall et al. 2002; Laine 2005; Niemi et al. 2006; Sicard et al. 2007; Springer 2007) (but see Kaltz et al. 1999 for an exception), and from classic boom-and-bust cycles, particularly in agricultural crops, where newly deployed resistance genes increase in frequency but then rapidly lose their effectiveness as pathogens adapt to that new variety (Browning & Frey 1969). However, there is notably little evidence of the opposite – hosts evolving resistance under the pressure of pathogen attack. At the same time, variation in disease resistance is widespread (Table 1; Salvaudon et al. 2008), which implies that natural plant populations have the capacity to undergo significant adaptive evolution in response to pathogen attack. Table 1 Summary information for studies used for assessing whether there is spatial variation in host resistance at different spatial scales. Studies with superscript ‘1’ in the Reference column were used for the analysis of levels of resistance ... Theoretical models of coevolution imply indirect negative frequency-dependent selection (FDS) between hosts and parasites within local populations, in which the selection rate for resistance depends on the frequency of parasite avirulence alleles and vice versa (Jayakar 1970; Leonard 1977; Bergelson et al. 2001). In systems with such FDS, costs of resistance and virulence have traditionally been required to maintain polymorphism in these traits (e.g. Jayakar 1970; Leonard 1977; Frank 1993), but recent theoretical work has shown metapopulation dynamics and spatially heterogenous selection to be as important, or even a sufficient condition, for the maintenance of polymorphism (Gandon et al. 1996; Gomulkiewicz et al. 2000; Nuismer et al. 2000; Gandon & Michalakis 2002; Thrall & Burdon 2002; Nuismer & Gandon 2008). Indeed, host-pathogen coevolutionary processes are intrinsically spatial as well as temporal, and occur at many different scales (Burdon & Thrall 2001). These range from single populations dominated by demographic and genetic stochasticity (Parker 1985; Burdon & Jarosz 1991; Alexander et al. 1993; Bevan et al. 1993a; Espiau et al. 1998), to metapopulations in which extinction/colonization dynamics have a large influence (Thrall et al. 2001; Ericson et al. 2002; Thrall et al. 2002; Smith et al. 2003; Antonovics 2004; Laine & Hanski 2006; Soubeyrand et al. 2009), and larger geographic regions where phylogenetic patterns and historical events become more important (Burdon et al. 2002; de Meaux et al. 2003; de Meaux & Mitchell-Olds 2003). Coevolutionary interactions between hosts and pathogens may occur at a broad range of spatial scales, from those encompassed by a single individual through various intermediate levels to those of the species as a whole. It has already been noted by several authors that variation in disease resistance is widespread (e.g. Parker 1985; Springer 2007; Jorgensen & Emerson 2008) yet, to date, we know little about how this variation is structured across space, and what are the processes driving host resistance structure at different spatial scales. This is despite the general recognition that variation in host resistance (and pathogen infectivity and aggressiveness) is of central importance to understanding patterns of infection (Hill 1998; Lockett et al. 2001). Indeed, study of the genetic components of host-pathogen interactions has lagged far behind work documenting the demographic impacts of disease. Thus, while some work has shown negative relationships between the overall diversity of hosts and parasitism (Coltman et al. 1999; Meagher 1999), in only a very few cases has host genetic variation been implicated in rates of epidemic spread of disease or patterns of disease prevalence (e.g. Thrall & Burdon 2000; Laine 2004). Here we review studies on how resistance is distributed in wild plant-pathogen interactions at different spatial scales: within individual hosts, within host populations, among populations at the metapopulation scale, and at regional scales. Understanding this hierarchical spatial structure has the potential to provide valuable insights into the influence of pathogens on host evolution, and spatial variation in the magnitude of their effect. Specifically, here we ask: 1) What are the kinds of resistance responses we find in wild plant populations (i.e. qualitative or quantitative)? 2) Given that there is polymorphism in resistance, are wild plant populations more likely to be resistant or susceptible to their pathogens? 3) How do host and pathogen life-history and origin of pathogen strain affect resistance of plant populations? 4) How is resistance diversity structured at these different spatial levels? We include here an analysis of two plant-pathogen interactions that have been studied in detail across several different spatial scales. One of these, the interaction between the wild flax, Linum marginale, and its obligate rust fungus Melampsora lini, is a native host-pathogen association which occurs across southern Australia. The other is the long-standing interaction between Plantago lanceolata and its obligate powdery mildew fungus, Podosphaera plantaginis in the southwest archipelago of Finland. Knowledge of these systems allows us to explicitly estimate how variation in disease resistance is hierarchically distributed at the different spatial scales. Finally, we conclude with a consideration of empirical and conceptual future directions for the study of plant-pathogen interactions.

Journal ArticleDOI
TL;DR: Evidence is given that HGT of the ToxA gene from Stagonospora nodorum to Pyrenophora tritici-repentis enabled the latter fungus to cause a serious disease in wheat, and the mechanisms HGT and HCT and their impact on potential emergence of fungal plant pathogens adapted to new host plants will be discussed.
Abstract: Plant pathogenic fungi adapt quickly to changing environments including overcoming plant disease resistance genes. This is usually achieved by mutations in single effector genes of the pathogens, enabling them to avoid recognition by the host plant. In addition, horizontal gene transfer (HGT) and horizontal chromosome transfer (HCT) provide a means for pathogens to broaden their host range. Recently, several reports have appeared in the literature on HGT, HCT and hybridization between plant pathogenic fungi that affect their host range, including species of Stagonospora/Pyrenophora, Fusarium and Alternaria. Evidence is given that HGT of the ToxA gene from Stagonospora nodorum to Pyrenophora tritici-repentis enabled the latter fungus to cause a serious disease in wheat. A nonpathogenic Fusarium species can become pathogenic on tomato by HCT of a pathogenicity chromosome from Fusarium oxysporum f.sp lycopersici, a well-known pathogen of tomato. Similarly, Alternaria species can broaden their host range by HCT of a single chromosome carrying a cluster of genes encoding host-specific toxins that enabled them to become pathogenic on new hosts such as apple, Japanese pear, strawberry and tomato, respectively. The mechanisms HGT and HCT and their impact on potential emergence of fungal plant pathogens adapted to new host plants will be discussed.

Journal ArticleDOI
TL;DR: Seaweed extracts enhance disease resistance in cucumber probably through induction of defense genes or enzymes, as well as accumulating higher level of phenolics compared to water controls.
Abstract: This study examined the effects of Stimplex™, a marine plant extract formulation from Ascophyllum nodosum, on some common cucumber fungal pathogens. Greenhouse cucumber plants were sprayed and/or root drenched using Stimplex™ at 0.5% or 1% concentration twice at 10-day intervals. Treatments also included application of fungicide (chlorothalonil, 2 g L−1) alternating with Stimplex™ application. Treated plants were inoculated with four cucumber fungal pathogens including Alternaria cucumerinum, Didymella applanata, Fusarium oxysporum, and Botrytis cinerea. Stimplex™ application resulted in a significant reduction in disease incidence of all the pathogens tested. The disease control effect was greater for Alternaria and Fusarium infection, followed by Didymella and Botrytis. Combined spray and root drenching with Stimplex™ was more effective than either spray or root drenching alone. The alternation of one fungicide application, alternated with Stimplex™ application, was highly effective and found to be the best treatment in reducing the disease ratings. Plants treated with Stimplex™ showed enhanced activities of various defense-related enzymes including chitinase, β-1,3-glucanase, peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, and lipoxygenase. Altered transcript levels of various defense genes, including chitinase, lipoxygenase, glucanase, peroxidase, and phenylalanine ammonia lyase were observed in treated plants. Cucumber plants treated with Stimplex™ also accumulated higher level of phenolics compared to water controls. These results suggest that seaweed extracts enhance disease resistance in cucumber probably through induction of defense genes or enzymes.

Journal ArticleDOI
TL;DR: It is proposed that a complex network of gene–gene interactions is, in part, responsible for resistance to Ug99.
Abstract: The recent emergence of wheat stem rust Ug99 and evolution of new races within the lineage threatens global wheat production because they overcome widely deployed stem rust resistance (Sr) genes that had been effective for many years. To identify loci conferring adult plant resistance to races of Ug99 in wheat, we employed an association mapping approach for 276 current spring wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT). Breeding lines were genotyped with Diversity Array Technology (DArT) and microsatellite markers. Phenotypic data was collected on these lines for stem rust race Ug99 resistance at the adult plant stage in the stem rust resistance screening nursery in Njoro, Kenya in seasons 2008, 2009 and 2010. Fifteen marker loci were found to be significantly associated with stem rust resistance. Several markers appeared to be linked to known Sr genes, while other significant markers were located in chromosome regions where no Sr genes have been previously reported. Most of these new loci colocalized with QTLs identified recently in different biparental populations. Using the same data and Q + K covariate matrices, we investigated the interactions among marker loci using linear regression models to calculate P values for pairwise marker interactions. Resistance marker loci including the Sr2 locus on 3BS and the wPt1859 locus on 7DL had significant interaction effects with other loci in the same chromosome arm and with markers on chromosome 6B. Other resistance marker loci had significant pairwise interactions with markers on different chromosomes. Based on these results, we propose that a complex network of gene–gene interactions is, in part, responsible for resistance to Ug99. Further investigation may provide insight for understanding mechanisms that contribute to this resistance gene network.

Journal ArticleDOI
TL;DR: In atg2-2 mutants, spontaneous cell death, early senescence and disease resistance required the salicylic acid (SA) pathway, but interestingly, mildew-induced cell death was not fully suppressed by inactivation of SA signaling, suggesting that cell death is not sufficient for resistance to powdery mildew.
Abstract: The molecular interactions between Arabidopsis and the pathogenic powdery mildew Golovinomyces cichoracearum were studied by characterizing a disease-resistant Arabidopsis mutant atg2-2. The atg2-2 mutant showed enhanced resistance to powdery mildew and dramatic mildew-induced cell death as well as early senescence phenotypes in the absence of pathogens. Defense-related genes were constitutively activated in atg2-2. In atg2-2 mutants, spontaneous cell death, early senescence and disease resistance required the salicylic acid (SA) pathway, but interestingly, mildew-induced cell death was not fully suppressed by inactivation of SA signaling. Thus, cell death could be uncoupled from disease resistance, suggesting that cell death is not sufficient for resistance to powdery mildew. ATG2 encodes autophagy-related 2, a protein known to be involved in the early steps of autophagosome biogenesis. The atg2-2 mutant exhibited typical autophagy defects in autophagosome formation. Furthermore, mutations in several other ATG genes, including ATG5, ATG7 and ATG10, exhibited similar powdery mildew resistance and mildew-induced cell death phenotypes. Taken together, our findings provide insights into the role of autophagy in cell death and disease resistance, and may indicate general links between autophagy, senescence, programmed cell death and defense responses in plants.

Journal ArticleDOI
TL;DR: PiAVR2 presence/absence polymorphisms and differential transcription explain virulence on R2 plants, and a search for R genes recognizing PiAVR 2-like is directed, which may exert strong selection pressure against the P. infestans population.
Abstract: • A detailed molecular understanding of how oomycete plant pathogens evade disease resistance is essential to inform the deployment of durable resistance (R) genes. • Map-based cloning, transient expression in planta, pathogen transformation and DNA sequence variation across diverse isolates were used to identify and characterize PiAVR2 from potato late blight pathogen Phytophthora infestans. • PiAVR2 is an RXLR-EER effector that is up-regulated during infection, accumulates at the site of haustoria formation, and is recognized inside host cells by potato protein R2. Expression of PiAVR2 in a virulent P. infestans isolate conveys a gain-of-avirulence phenotype, indicating that this is a dominant gene triggering R2-dependent disease resistance. PiAVR2 presence/absence polymorphisms and differential transcription explain virulence on R2 plants. Isolates infecting R2 plants express PiAVR2-like, which evades recognition by R2. PiAVR2 and PiAVR2-like differ in 13 amino acids, eight of which are in the C-terminal effector domain; one or more of these determines recognition by R2. Nevertheless, few polymorphisms were observed within each gene in pathogen isolates, suggesting limited selection pressure for change within PiAVR2 and PiAVR2-like. • Our results direct a search for R genes recognizing PiAVR2-like, which, deployed with R2, may exert strong selection pressure against the P. infestans population.

Journal ArticleDOI
TL;DR: The paucity of well characterised APR genes, particularly for stem rust, calls for a focused effort in developing critical genetic stocks to delineate quantitative trait loci, construct specific BAC libraries for targeted APR genes to facilitate robust marker development for breeding applications, and the eventual cloning of the encoding genes.
Abstract: Over 150 resistance genes that confer resistance to either leaf rust, stripe rust or stem rust have been catalogued in wheat or introgressed into wheat from related species. A few of these genes from the ‘slow-rusting’ adult plant resistance (APR) class confer partial resistance in a race non-specific manner to one or multiple rust diseases. The recent cloning of two of these genes, Lr34/Yr18, a dual APR for leaf rust and stripe rust, and Yr36, a stripe rust APR gene, showed that they differ from other classes of plant resistance genes. Currently, seven Lr34/Yr18 haplotypes have been identified from sequencing the encoding ATP Binding Cassette transporter gene from diverse wheat germplasm of which one haplotype is commonly associated with the resistance phenotype. The paucity of well characterised APR genes, particularly for stem rust, calls for a focused effort in developing critical genetic stocks to delineate quantitative trait loci, construct specific BAC libraries for targeted APR genes to facilitate robust marker development for breeding applications, and the eventual cloning of the encoding genes.

Journal ArticleDOI
TL;DR: Genomic selection (GS) could be an important tool for achieving the Borlaug Global Rust Initiative's (BGRI) goal of developing durable stem rust resistance in wheat by reducing the selection cycle length of a breeding program for traits like APR that could take several seasons to generate reliable phenotypes.
Abstract: Inheritance of stem rust (caused by Puccinia graminis f. sp. tritici) resistance in wheat can be either qualitative or quantitative. While quantitative disease resistance is believed to be more durable, it is more difficult to evaluate if it is expressed only in mature plants, i.e. adult plant resistance (APR). Marker-assisted selection (MAS) methods for APR would be useful; however, the multigenic nature of APR impedes the use of MAS efforts that aim to pyramid only a few target genes. A promising alternative is genomic selection (GS), which utilizes genome-wide marker coverage to predict genotypic values for quantitative traits. In turn, GS can reduce the selection cycle length of a breeding program for traits like APR that could take several seasons to generate reliable phenotypes. In this paper, we describe the GS process for use in crop improvement, both specifically for APR and in general. We also propose a GS–based wheat breeding scheme for quantitative resistance to stem rust that, when compared to current breeding schemes, can reduce cycle time by up to twofold and facilitates pyramiding of major genes with APR genes. Thus, GS could be an important tool for achieving the Borlaug Global Rust Initiative’s (BGRI) goal of developing durable stem rust resistance in wheat.

Journal ArticleDOI
TL;DR: Results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species.
Abstract: Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species such as Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). However, the importance of MAPK signaling pathways in the disease resistance of crops is still largely uninvestigated. To better understand the role of MAPK signaling pathways in disease resistance in soybean (Glycine max), 13, nine, and 10 genes encoding distinct MAPKs, MAPKKs, and MAPKKKs, respectively, were silenced using virus-induced gene silencing mediated by Bean pod mottle virus. Among the plants silenced for various MAPKs, MAPKKs, and MAPKKKs, those in which GmMAPK4 homologs (GmMPK4s) were silenced displayed strong phenotypes including stunted stature and spontaneous cell death on the leaves and stems, the characteristic hallmarks of activated defense responses. Microarray analysis showed that genes involved in defense responses, such as those in salicylic acid (SA) signaling pathways, were significantly up-regulated in GmMPK4-silenced plants, whereas genes involved in growth and development, such as those in auxin signaling pathways and in cell cycle and proliferation, were significantly down-regulated. As expected, SA and hydrogen peroxide accumulation was significantly increased in GmMPK4-silenced plants. Accordingly, GmMPK4-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants. Using bimolecular fluorescence complementation analysis and in vitro kinase assays, we determined that GmMKK1 and GmMKK2 might function upstream of GmMPK4. Taken together, our results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species.

Journal ArticleDOI
TL;DR: Metabolic analysis revealed a progressing shift of steady state contents of the intermediates glucose-1-phosphate, uridinediphosphate-glucose, and phosphoenolpyruvate 24 and 96 hpi, indicating that B. graminis shifts central carbohydrate metabolism in favor of sucrose biosynthesis.
Abstract: Colonization of barley roots with the basidiomycete fungus Piriformospora indica (Sebacinales) induces systemic resistance against the biotrophic leaf pathogen Blumeria graminis f. sp. hordei (B. graminis). To identify genes involved in this mycorrhiza-induced systemic resistance, we compared the leaf transcriptome of P. indica-colonized and noncolonized barley plants 12, 24, and 96 h after challenge with a virulent race of B. graminis. The leaf pathogen induced specific gene sets (e.g., LRR receptor kinases and WRKY transcription factors) at 12 h postinoculation (hpi) (prepenetration phase) and vesicle-localized gene products 24 hpi (haustorium establishment). Metabolic analysis revealed a progressing shift of steady state contents of the intermediates glucose-1-phosphate, uridinediphosphate-glucose, and phosphoenolpyruvate 24 and 96 hpi, indicating that B. graminis shifts central carbohydrate metabolism in favor of sucrose biosynthesis. Both B. graminis and P. indica increased glutamine and alanine contents, whereas substrates for starch and nitrogen assimilation (adenosinediphosphate- glucose and oxoglutarate) decreased. In plants that were more B. graminis resistant due to P. indica root colonization, 22 transcripts, including those of pathogenesis-related genes and genes encoding heat-shock proteins, were differentially expressed ?twofold in leaves after B. graminis inoculation compared with non-mycorrhized plants. Detailed expression analysis revealed a faster induction after B. graminis inoculation between 8 and 16 hpi, suggesting that priming of these genes is an important mechanism of P. indica-induced systemic disease resistance.

Journal ArticleDOI
TL;DR: A quantitative trait locus (QTL) analysis allowed us to identify on linkage group 14 a major QTL controlling the resistance to downy mildew found in V. amurensis, which explained up to 86.3% of the total phenotypic variance.
Abstract: Downy mildew, caused by the oomycete Plasmopara viticola, is one of the major threats to grapevine. All traditional cultivars of grapevine (Vitis vinifera) are susceptible to downy mildew, the control of which requires regular application of fungicides. In contrast, many sources of resistance to P. viticola have been described in the Vitis wild species, among which is V. amurensis Rupr. (Vitaceae), a species originating from East Asia. A genetic linkage map of V. amurensis, based on 122 simple sequence repeat and 6 resistance gene analogue markers, was established using S1 progeny. This map covers 975 cM on 19 linkage groups, which represent 82% of the physical coverage of the V. vinifera reference genetic map. To measure the general level of resistance, the sporulation of P. viticola and the necrosis produced in response to infection, five quantitative and semi-quantitative parameters were scored 6 days post-inoculation on the S1 progeny. A quantitative trait locus (QTL) analysis allowed us to identify on linkage group 14 a major QTL controlling the resistance to downy mildew found in V. amurensis, which explained up to 86.3% of the total phenotypic variance. This QTL was named ‘Resistance to Plasmopara viticola 8’ (Rpv8).

Journal ArticleDOI
TL;DR: It is suggested that some endophytes have the potential to activate both basal and inducible plant defense systems, whereas the growth promotion by biocontrol strains may not correlate with induction of disease resistance.

Journal ArticleDOI
TL;DR: A loss or increase of disease resistance due to an alteration in TaJRLL1 function was correlated with attenuation or enhancement of the SA- and JA-dependent defence signalling pathways.
Abstract: Jacalin-related lectins (JRLs) are a subgroup of proteins with one or more jacalin-like lectin domains. Although JRLs are often associated with biotic or abiotic stimuli, their biological functions in plants, as well as their relationships to plant disease resistance, are poorly understood. A mannose-specific JRL (mJRL)-like gene (TaJRLL1) that is mainly expressed in stem and spike and encodes a protein with two jacalin-like lectin domains was identified in wheat. Pathogen infection and phytohormone treatments induced its expression; while application of the salicylic acid (SA) biosynthesis inhibitor paclobutrazol and the jasmonic acid (JA) biosynthesis inhibitor diethyldithiocarbamic acid, respectively, substantially inhibited its expression. Attenuating TaJRLL1 through virus-induced gene silencing increased susceptibility to the facultative fungal pathogen Fusarium graminearum and the biotrophic fungal pathogen Blumeria graminis. Arabidopsis thaliana transformed with TaJRLL1 displayed increased resistance to F. graminearum and Botrytis cinerea. JA and SA levels in transgenic Arabidopsis increased significantly. A loss or increase of disease resistance due to an alteration in TaJRLL1 function was correlated with attenuation or enhancement of the SA- and JA-dependent defence signalling pathways. These results suggest that TaJRLL1 could be a component of the SA- and JA-dependent defence signalling pathways.

Journal ArticleDOI
TL;DR: The interaction of T. harzianum and the AMF with the plant produced a characteristic hormonal profile, which differed from that produced by inoculation with each microorganism singly, suggesting an attenuation of the plant response, related to the hormones SA, JA and ethylene.

Journal ArticleDOI
TL;DR: While further study is needed to determine the relationship between SrCAD and other Sr genes on chromosome 6DS, SrCad represents a valuable genetic resource for producing stem rust resistant wheat cultivars and is the basis for all of the seedling resistance to Ug99 in Canadian wheat cultivar.
Abstract: Stem rust (caused by Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. & E. Henn.) has re-emerged as a threat to wheat production with the evolution of new pathogen races, namely TTKSK (Ug99) and its variants, in Africa. Deployment of resistant wheat cultivars has provided long-term control of stem rust. Identification of new resistance genes will contribute to future cultivars with broad resistance to stem rust. The related Canadian cultivars Peace and AC Cadillac show resistance to Ug99 at the seedling stage and in the field. The purpose of this study was to elucidate the inheritance and genetically map resistance to Ug99 in these two cultivars. Two populations were produced, an F2:3 population from LMPG/AC Cadillac and a doubled haploid (DH) population from RL6071/Peace. Both populations showed segregation at the seedling stage for a single stem rust resistance (Sr) gene, temporarily named SrCad. SrCad was mapped to chromosome 6DS in both populations with microsatellite markers and a marker (FSD_RSA) that is tightly linked to the common bunt resistance gene Bt10. FSD_RSA was the closest marker to SrCad (≈1.6 cM). Evaluation of the RL6071/Peace DH population and a second DH population, AC Karma/87E03-S2B1, in Kenya showed that the combination of SrCad and leaf rust resistance gene Lr34 provided a high level of resistance to Ug99-type races in the field, whereas in the absence of Lr34 SrCad conferred moderate resistance. A survey confirmed that SrCad is the basis for all of the seedling resistance to Ug99 in Canadian wheat cultivars. While further study is needed to determine the relationship between SrCad and other Sr genes on chromosome 6DS, SrCad represents a valuable genetic resource for producing stem rust resistant wheat cultivars.

Journal ArticleDOI
TL;DR: Bd is the first reported plant species to allow successful infection on intact foliar tissues by FHB-causing Fusarium species, and exhibits characteristics of susceptibility highly similar to those of wheat, including susceptibility to spread of disease in the spikelets.
Abstract: Fusarium species cause Fusarium head blight (FHB) and other important diseases of cereals. The causal agents produce trichothecene mycotoxins such as deoxynivalenol (DON). The dicotyledonous model species Arabidopsis thaliana has been used to study Fusarium-host interactions but it is not ideal for model-to-crop translation. Brachypodium distachyon (Bd) has been proposed as a new monocotyledonous model species for functional genomic studies in grass species. This study aims to assess the interaction between the most prevalent FHB-causing Fusarium species and Bd in order to develop and exploit Bd as a genetic model for FHB and other Fusarium diseases of wheat. The ability of Fusarium graminearum and Fusarium culmorum to infect a range of Bd tissues was examined in various bioassays which showed that both species can infect all Bd tissues examined, including intact foliar tissues. DON accumulated in infected spike tissues at levels similar to those of infected wheat spikes. Histological studies revealed details of infection, colonisation and host response and indicate that hair cells are important sites of infection. Susceptibility to Fusarium and DON was assessed in two Bd ecotypes and revealed variation in resistance between ecotypes. Bd exhibits characteristics of susceptibility highly similar to those of wheat, including susceptibility to spread of disease in the spikelets. Bd is the first reported plant species to allow successful infection on intact foliar tissues by FHB-causing Fusarium species. DON appears to function as a virulence factor in Bd as it does in wheat. Bd is proposed as a valuable model for undertaking studies of Fusarium head blight and other Fusarium diseases of wheat.

Journal ArticleDOI
TL;DR: Co-segregation analysis revealed that a single dominant gene in AND 277 confers resistance to races 65, 73, and 2047 of the ANT and to race 63-23 of the ALS pathogens, and two new molecular markers, CV542014450 and TGA1.1570 were identified, illustrating the rapid discovery of new markers through synteny mapping.
Abstract: The Andean common bean AND 277 has the Co-1(4) and the Phg-1 alleles that confer resistance to 21 and eight races, respectively, of the anthracnose (ANT) and angular leaf spot (ALS) pathogens. Because of its broad resistance spectrum, Co-1(4) is one of the main genes used in ANT resistance breeding. Additionally, Phg-1 is used for resistance to ALS. In this study, we elucidate the inheritance of the resistance of AND 277 to both pathogens using F(2) populations from the AND 277 × Ruda and AND 277 × Ouro Negro crosses and F(2:3) families from the AND 277 × Ouro Negro cross. Ruda and Ouro Negro are susceptible to all of the above races of both pathogens. Co-segregation analysis revealed that a single dominant gene in AND 277 confers resistance to races 65, 73, and 2047 of the ANT and to race 63-23 of the ALS pathogens. Co-1(4) and Phg-1 are tightly linked (0.0 cM) on linkage group Pv01. Through synteny mapping between common bean and soybean we also identified two new molecular markers, CV542014(450) and TGA1.1(570), tagging the Co-1(4) and Phg-1 loci. These markers are linked at 0.7 and 1.3 cM, respectively, from the Co-1(4) /Phg-1 locus in coupling phase. The analysis of allele segregation in the BAT 93/Jalo EEP558 and California Dark Red Kidney/Yolano recombinant populations revealed that CV542014(450) and TGA1.1(570) segregated in the expected 1:1 ratio. Due to the physical linkage in cis configuration, Co-1(4) and Phg-1 are inherited together and can be monitored indirectly with the CV542014(450) and TGA1.1(570) markers. These results illustrate the rapid discovery of new markers through synteny mapping. These markers will reduce the time and costs associated with the pyramiding of these two disease resistance genes.

Journal ArticleDOI
TL;DR: The results suggest that exogenous ABA could enhance disease resistance against A. solani infection in tomato through the activation of defense genes and via the enhancement of defense-related enzymatic activities.