scispace - formally typeset
Search or ask a question

Showing papers on "Plant disease resistance published in 2018"


Journal ArticleDOI
TL;DR: This study demonstrates that Arabidopsis thaliana specifically promotes three bacterial species in the rhizosphere upon foliar defense activation by the downy mildew pathogen Hyaloperonospora arabidopsidis, and indicates that plants can adjust their root microbiome upon pathogen infection and specifically recruit a group of disease resistance-inducing and growth-promoting beneficial microbes.
Abstract: Disease suppressive soils typically develop after a disease outbreak due to the subsequent assembly of protective microbiota in the rhizosphere. The role of the plant immune system in the assemblage of a protective rhizosphere microbiome is largely unknown. In this study, we demonstrate that Arabidopsis thaliana specifically promotes three bacterial species in the rhizosphere upon foliar defense activation by the downy mildew pathogen Hyaloperonospora arabidopsidis. The promoted bacteria were isolated and found to interact synergistically in biofilm formation in vitro. Although separately these bacteria did not affect the plant significantly, together they induced systemic resistance against downy mildew and promoted growth of the plant. Moreover, we show that the soil-mediated legacy of a primary population of downy mildew infected plants confers enhanced protection against this pathogen in a second population of plants growing in the same soil. Together our results indicate that plants can adjust their root microbiome upon pathogen infection and specifically recruit a group of disease resistance-inducing and growth-promoting beneficial microbes, therewith potentially maximizing the chance of survival of their offspring that will grow in the same soil.

478 citations


Journal ArticleDOI
TL;DR: A role for native microbiota in protecting plants from microbial pathogens is revealed, and the approach charts a path toward the development of probiotics to ameliorate plant diseases.
Abstract: Tomato variety Hawaii 7996 is resistant to the soil-borne pathogen Ralstonia solanacearum, whereas the Moneymaker variety is susceptible to the pathogen. To evaluate whether plant-associated microorganisms have a role in disease resistance, we analyzed the rhizosphere microbiomes of both varieties in a mesocosm experiment. Microbiome structures differed between the two cultivars. Transplantation of rhizosphere microbiota from resistant plants suppressed disease symptoms in susceptible plants. Comparative analyses of rhizosphere metagenomes from resistant and susceptible plants enabled the identification and assembly of a flavobacterial genome that was far more abundant in the resistant plant rhizosphere microbiome than in that of the susceptible plant. We cultivated this flavobacterium, named TRM1, and found that it could suppress R. solanacearum-disease development in a susceptible plant in pot experiments. Our findings reveal a role for native microbiota in protecting plants from microbial pathogens, and our approach charts a path toward the development of probiotics to ameliorate plant diseases.

417 citations


Journal ArticleDOI
TL;DR: The data suggest that plants can recruit beneficial rhizosphere communities via modification of plant exudation patterns in response to exposure to aboveground pathogens to the benefit of subsequent plant generations.
Abstract: Plants are capable of building up beneficial rhizosphere communities as is evidenced by disease-suppressive soils. However, it is not known how and why soil bacterial communities are impacted by plant exposure to foliar pathogens and if such responses might improve plant performance in the presence of the pathogen. Here, we conditioned soil by growing multiple generations (five) of Arabidopsis thaliana inoculated aboveground with Pseudomonas syringae pv tomato (Pst) in the same soil. We then examined rhizosphere communities and plant performance in a subsequent generation (sixth) grown in pathogen-conditioned versus control-conditioned soil. Moreover, we assessed the role of altered root exudation profiles in shaping the root microbiome of infected plants. Plants grown in conditioned soil showed increased levels of jasmonic acid and improved disease resistance. Illumina Miseq 16S rRNA gene tag sequencing revealed that both rhizosphere and bulk soil bacterial communities were altered by Pst infection. Infected plants exhibited significantly higher exudation of amino acids, nucleotides, and long-chain organic acids (LCOAs) (C > 6) and lower exudation levels for sugars, alcohols, and short-chain organic acids (SCOAs) (C ≤ 6). Interestingly, addition of exogenous amino acids and LCOA also elicited a disease-suppressive response. Collectively, our data suggest that plants can recruit beneficial rhizosphere communities via modification of plant exudation patterns in response to exposure to aboveground pathogens to the benefit of subsequent plant generations.

277 citations


Journal ArticleDOI
TL;DR: Investigation of the composition and metabolic potential of the rhizobacterial community of different common bean cultivars with variable levels of resistance to the fungal root pathogen Fusarium oxysporum suggests breeding for Fox resistance in common bean may have co-selected for other unknown plant traits that support a higher abundance of specific beneficial bacterial families in therhizosphere with functional traits that reinforce the first line of defense.
Abstract: The rhizosphere microbiome has a key role in plant growth and health, providing a first line of defense against root infections by soil-borne pathogens. Here, we investigated the composition and metabolic potential of the rhizobacterial community of different common bean (Phaseolus vulgaris) cultivars with variable levels of resistance to the fungal root pathogen Fusarium oxysporum (Fox). For the different bean cultivars grown in two soils with contrasting physicochemical properties and microbial diversity, rhizobacterial abundance was positively correlated with Fox resistance. Pseudomonadaceae, bacillaceae, solibacteraceae and cytophagaceae were more abundant in the rhizosphere of the Fox-resistant cultivar. Network analyses showed a modular topology of the rhizosphere microbiome of the Fox-resistant cultivar, suggesting a more complex and highly connected bacterial community than in the rhizosphere of the Fox-susceptible cultivar. Metagenome analyses further revealed that specific functional traits such as protein secretion systems and biosynthesis genes of antifungal phenazines and rhamnolipids were more abundant in the rhizobacterial community of the Fox-resistant cultivar. Our findings suggest that breeding for Fox resistance in common bean may have co-selected for other unknown plant traits that support a higher abundance of specific beneficial bacterial families in the rhizosphere with functional traits that reinforce the first line of defense.

225 citations



Journal ArticleDOI
TL;DR: The authors report map-based cloning of the wheat Stb6 gene, which encodes a conserved wall-associated receptor kinase (WAK)-like protein, which confers gene-for-gene disease resistance to fungal pathogen Zymoseptoria tritici by recognition of a matching pathogen effector.
Abstract: Deployment of fast-evolving disease-resistance genes is one of the most successful strategies used by plants to fend off pathogens1,2. In gene-for-gene relationships, most cloned disease-resistance genes encode intracellular nucleotide-binding leucine-rich-repeat proteins (NLRs) recognizing pathogen-secreted isolate-specific avirulence (Avr) effectors delivered to the host cytoplasm3,4. This process often triggers a localized hypersensitive response, which halts further disease development 5 . Here we report the map-based cloning of the wheat Stb6 gene and demonstrate that it encodes a conserved wall-associated receptor kinase (WAK)-like protein, which detects the presence of a matching apoplastic effector6-8 and confers pathogen resistance without a hypersensitive response 9 . This report demonstrates gene-for-gene disease resistance controlled by this class of proteins in plants. Moreover, Stb6 is, to our knowledge, the first cloned gene specifying resistance to Zymoseptoria tritici, an important foliar fungal pathogen affecting wheat and causing economically damaging septoria tritici blotch (STB) disease10-12.

174 citations


Journal ArticleDOI
TL;DR: The cloning of Yr15 is reported, a broad-spectrum R-gene derived from wild emmer wheat, which encodes a putative kinase-pseudokinase protein, designated as wheat tandem kinase 1, comprising a unique R-Gene structure in wheat.
Abstract: Yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating fungal disease threatening much of global wheat production. Race-specific resistance (R)-genes are used to control rust diseases, but the rapid emergence of virulent Pst races has prompted the search for a more durable resistance. Here, we report the cloning of Yr15, a broad-spectrum R-gene derived from wild emmer wheat, which encodes a putative kinase-pseudokinase protein, designated as wheat tandem kinase 1, comprising a unique R-gene structure in wheat. The existence of a similar gene architecture in 92 putative proteins across the plant kingdom, including the barley RPG1 and a candidate for Ug8, suggests that they are members of a distinct family of plant proteins, termed here tandem kinase-pseudokinases (TKPs). The presence of kinase-pseudokinase structure in both plant TKPs and the animal Janus kinases sheds light on the molecular evolution of immune responses across these two kingdoms.

174 citations


Journal ArticleDOI
TL;DR: Due to an increase of the area under Milan based resistant wheat cultivars in Bolivia, Brazil and Paraguay, it needs to be combined with other sources of resistance urgently to prevent the selection of a virulent pathotype in the fungus.
Abstract: Wheat blast disease caused by Pyricularia grisea (telemorph Magnaporthe grisea) has become a serious restriction on increasing the area and production of the crop, especially in the tropical parts of the Southern Cone Region of South America. First identified in 1985 in the State of Parana in Brazil, it has become an endemic disease in the low lying Santa Cruz region of Bolivia, south and south-eastern Paraguay, and central and southern Brazil in recent years. Severe infections have also been observed in the summer planted wheat crop in north-eastern Argentina. So far, only sporadic infections have been seen in Uruguay, especially during the wet and warm years. Spike infection (often confused with Fusarium head blight infection) is the most notable symptom of the disease and capable of caus - ing over 40% production losses. However, under severe infection, the loss of production can be almost complete in susceptible varieties. Wheat blast is mainly a spike disease but can also produce lesions on all the above ground parts of the plant under certain conditions. Depending upon the point of the infection on the rachis, the disease can kill the spike partially or fully. The infected portion of the spike dries out without producing any grain which can be visibly distinguished from the healthy portion. While virulence diversity in the fungus has been reported in the literature and is under further exploration, genetic resistance in the host species has been more difficult to identify. Earlier, Brazil - ian cultivars such as BH 1146, CNT 8, several IAC and OCEPAR selections were credited as demonstrating different levels of field resistance, but this was not confirmed under artificial inoculation studies. However, other cultivars such as BR18, IPR 85, CD 113, have shown moderate levels of resistance over the years in many locations. Recently, several cultivars and advanced lines derived from the CIMMYT line, Milan, have been observed to carry a high level of resistance to blast disease throughout the endemic region. However, to date, the genetic basis of this resistance is not very clear due to extreme variation in the pathogen. Cultivars showing complete resistance against a few isolates under controlled conditions in the glasshouse, may or may not show field resistance in commercial cultivation. Due to an increase of the area under Milan based resistant wheat cultivars in Bolivia, Brazil and Paraguay, it needs to be combined with other sources of resistance urgently to prevent the selection of a virulent pathotype in the fungus. Besides genetic resistance, avoidance of early dates of seeding and chemical control can reduce the disease severity. Fungicides combining triazols with strobilurins can, under some situations, be effective in disease control at the heading stage. Even when all components of integrated disease management of wheat blast are not in place yet, it is seen as an essential strategy to reduce production losses in this region. Given the threat that the blast disease may pose to world wheat growing areas in the future, more research efforts are deemed urgent and necessary.

156 citations


Journal ArticleDOI
TL;DR: The identification and characterization of the rice bsr-k1 (broad-spectrum resistance Kitaake-1) mutant, which confers broad-spectrums resistance against Magnaporthe oryzae and Xanthomonas oryzai pv oryzAE with no major penalty on key agronomic traits is reported.
Abstract: Crops carrying broad-spectrum resistance loci provide an effective strategy for controlling infectious disease because these loci typically confer resistance to diverse races of a pathogen or even multiple species of pathogens. Despite their importance, only a few crop broad-spectrum resistance loci have been reported. Here, we report the identification and characterization of the rice bsr-k1 (broad-spectrum resistance Kitaake-1) mutant, which confers broad-spectrum resistance against Magnaporthe oryzae and Xanthomonas oryzae pv oryzae with no major penalty on key agronomic traits. Map-based cloning reveals that Bsr-k1 encodes a tetratricopeptide repeats (TPRs)-containing protein, which binds to mRNAs of multiple OsPAL (OsPAL1-7) genes and promotes their turnover. Loss of function of the Bsr-k1 gene leads to accumulation of OsPAL1-7 mRNAs in the bsr-k1 mutant. Furthermore, overexpression of OsPAL1 in wild-type rice TP309 confers resistance to M. oryzae, supporting the role of OsPAL1 Our discovery of the bsr-k1 allele constitutes a significant conceptual advancement and provides a valuable tool for breeding broad-spectrum resistant rice.

135 citations


Journal ArticleDOI
TL;DR: This is a PDF file of an unedited manuscript that has been accepted for publication and will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.

133 citations


Journal ArticleDOI
TL;DR: Yeast two-hybrid, bimolecular fluorescence complementation and luciferase complementation imaging assays showed that Pm60 protein interacts with its neighboring NB-containing protein, suggesting that they might be functionally related.
Abstract: Powdery mildew is one of the most devastating diseases of wheat. To date, few powdery mildew resistance genes have been cloned from wheat due to the size and complexity of the wheat genome. Triticum urartu is the progenitor of the A genome of wheat and is an important source for powdery mildew resistance genes. Using molecular markers designed from scaffolds of the sequenced T. urartu accession and standard map-based cloning, a powdery mildew resistance locus was mapped to a 356-kb region, which contains two nucleotide-binding and leucine-rich repeat domain (NB-LRR) protein-encoding genes. Virus-induced gene silencing, single-cell transient expression, and stable transformation assays demonstrated that one of these two genes, designated Pm60, confers resistance to powdery mildew. Overexpression of full-length Pm60 and two allelic variants in Nicotiana benthamiana leaves induced hypersensitive cell death response, but expression of the coiled-coil domain alone was insufficient to induce hypersensitive response. Yeast two-hybrid, bimolecular fluorescence complementation and luciferase complementation imaging assays showed that Pm60 protein interacts with its neighboring NB-containing protein, suggesting that they might be functionally related. The identification and cloning of this novel wheat powdery mildew resistance gene will facilitate breeding for disease resistance in wheat.

Journal ArticleDOI
Yunxie Wei1, Yanli Chang1, Hongqiu Zeng1, Guoyin Liu1, Chaozu He1, Haitao Shi1 
TL;DR: MeRAV1 and MeRAV2 are identified as common and upstream transcription factors of melatonin synthesis genes in cassava and a model of MeRAVs 1 and Me RAV2‐melatonin biosynthesis genes‐mel testosterone level in plant disease resistance against cassava bacterial blight is revealed.
Abstract: With one AP2 domain and one B3 domain, 7 MeRAVs in apetala2/ethylene response factor (AP2/ERF) gene family have been identified in cassava. However, the in vivo roles of these remain unknown. Gene expression assays showed that the transcripts of MeRAVs were commonly regulated after Xanthomonas axonopodis pv manihotis (Xam) and MeRAVs were specifically located in plant cell nuclei. Through virus-induced gene silencing (VIGS) in cassava, we found that MeRAV1 and MeRAV2 are essential for plant disease resistance against cassava bacterial blight, as shown by the bacterial propagation of Xam in plant leaves. Through VIGS in cassava leaves and overexpression in cassava leave protoplasts, we found that MeRAV1 and MeRAV2 positively regulated melatonin biosynthesis genes and the endogenous melatonin level. Further investigation showed that MeRAV1 and MeRAV2 are direct transcriptional activators of three melatonin biosynthesis genes in cassava, as evidenced by chromatin immunoprecipitation (ChIP)-PCR in cassava leaf protoplasts and electrophoretic mobility shift assay (EMSA). Moreover, cassava melatonin biosynthesis genes also positively regulated plant disease resistance. Taken together, this study identified MeRAV1 and MeRAV2 as common and upstream transcription factors of melatonin synthesis genes in cassava, and revealed a model of MeRAV1 and MeRAV2-melatonin biosynthesis genes-melatonin level in plant disease resistance against cassava bacterial blight. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
TL;DR: Genomic‐enabled prediction Machine learning Wheat breeding Rust resistance Wheat breedingRust resistance gene expression machine learning
Abstract: New methods and algorithms are being developed for predicting untested phenotypes in schemes commonly used in genomic selection (GS). The prediction of disease resistance in GS has its own peculiarities: a) there is consensus about the additive nature of quantitative adult plant resistance (APR) genes, although epistasis has been found in some populations; b) rust resistance requires effective combinations of major and minor genes; and c) disease resistance is commonly measured based on ordinal scales (e.g., scales from 1-5, 1-9, etc.). Machine learning (ML) is a field of computer science that uses algorithms and existing samples to capture characteristics of target patterns. In this paper we discuss several state-of-the-art ML methods that could be applied in GS. Many of them have already been used to predict rust resistance in wheat. Others are very appealing, given their performance for predicting other wheat traits with similar characteristics. We briefly describe the proposed methods in the Appendix.

Journal ArticleDOI
12 Jan 2018-Rice
TL;DR: OsWRKY11 integrates plant responses to pathogens and abiotic stresses by positively modulating the expression of biotic and abotic stress-related genes.
Abstract: Plants are frequently subjected to abiotic and biotic stresses, and WRKY proteins play a pivotal role in the response to such stress. OsWRKY11 is induced by pathogens, drought, and heat, suggesting a function in biotic and abiotic stress responses. This study identified OsWRKY11, a member of WRKY group IIc. It is a transcriptional activator that localized to the nucleus. Ectopic expression of OsWRKY11 resulted in enhanced resistance to a bacterial pathogen, Xanthomonas oryzae pv. oryzae; resistance was compromised in transgenic lines under-expressing OsWRKY11. Ectopic expression of OsWRKY11 resulted in constitutive expression of defense-associated genes, whereas knock-down (kd) of OsWRKY11 reduced expression of defense-associated genes during pathogen attack, suggesting that OsWRKY11 activates defense responses. OsWRKY11 bound directly to the promoter of CHITINASE 2, a gene associated with defense, and activated its transcription. In addition, ectopic expression of OsWRKY11 enhanced tolerance to drought stress and induced constitutive expression of drought-responsive genes. Induction of drought-responsive genes was compromised in OsWRKY11-kd plants. OsWRKY11 also bound directly to the promoter of a drought-responsive gene, RAB21, activating its transcription. In addition, OsWRKY11 protein levels were controlled by the ubiquitin-proteasome system. OsWRKY11 integrates plant responses to pathogens and abiotic stresses by positively modulating the expression of biotic and abiotic stress-related genes.

Journal ArticleDOI
TL;DR: Findings strongly suggest that TaLr35PR5 is involved in Lr35-mediated adult wheat defense in response to leaf rust attack.
Abstract: Plants have evolved multifaceted defence mechanisms to resist pathogen infection. Production of the pathogenesis-related (PR) proteins in response to pathogen attack has been implicated in plant disease resistance specialized in systemic-acquired resistance (SAR). Our earlier studies have reported that a full length TaLr35PR5 gene, encoding a protein exhibiting amino acid and structural similarity to a sweet protein thaumatin, was isolated from wheat near-isogenic line TcLr35. The present study aims to understand the function of TaLr35PR5 gene in Lr35-mediated adult resistance to Puccinia triticina. We determined that the TaLr35PR5 protein contained a functional secretion peptide by utilizing the yeast signal sequence trap system. Using a heterologous expression assay on onion epidermal cells we found that TaLr35PR5 protein was secreted into the apoplast of onion cell. Expression of TaLr35PR5 was significantly reduced in BSMV-induced gene silenced wheat plants, and pathology test on these silenced plants revealed that Lr35-mediated resistance phenotype was obviously altered, indicating that Lr35-mediated resistance was compromised. All these findings strongly suggest that TaLr35PR5 is involved in Lr35-mediated adult wheat defense in response to leaf rust attack.

Journal ArticleDOI
TL;DR: It is concluded that identifying candidate genes linked to significant markers in GWAS is feasible in wheat, thus creating opportunities for accelerating molecular breeding.
Abstract: Genome-wide association mapping in conjunction with population sequencing map and Ensembl plants was used to identify markers/candidate genes linked to leaf rust, stripe rust and tan spot resistance in wheat. Leaf rust (LR), stripe rust (YR) and tan spot (TS) are some of the important foliar diseases in wheat (Triticum aestivum L.). To identify candidate resistance genes for these diseases in CIMMYT’s (International Maize and Wheat Improvement Center) International bread wheat screening nurseries, we used genome-wide association studies (GWAS) in conjunction with information from the population sequencing map and Ensembl plants. Wheat entries were genotyped using genotyping-by-sequencing and phenotyped in replicated trials. Using a mixed linear model, we observed that seedling resistance to LR was associated with 12 markers on chromosomes 1DS, 2AS, 2BL, 3B, 4AL, 6AS and 6AL, and seedling resistance to TS was associated with 14 markers on chromosomes 1AS, 2AL, 2BL, 3AS, 3AL, 3B, 6AS and 6AL. Seedling and adult plant resistance (APR) to YR were associated with several markers at the distal end of chromosome 2AS. In addition, YR APR was also associated with markers on chromosomes 2DL, 3B and 7DS. The potential candidate genes for these diseases included several resistance genes, receptor-like serine/threonine-protein kinases and defense-related enzymes. However, extensive LD in wheat that decays at about 5 × 107 bps, poses a huge challenge for delineating candidate gene intervals and candidates should be further mapped, functionally characterized and validated. We also explored a segment on chromosome 2AS associated with multiple disease resistance and identified seventeen disease resistance linked genes. We conclude that identifying candidate genes linked to significant markers in GWAS is feasible in wheat, thus creating opportunities for accelerating molecular breeding.

Journal ArticleDOI
TL;DR: Recent advances in RNAi‐mediated control of plant pathogenic fungi are described, highlighting the key advantages and disadvantages and the implications of combining HIGS with other methods of disease control.
Abstract: Fusarium graminearum is a major fungal pathogen of cereals worldwide, causing seedling, stem base and floral diseases, including Fusarium head blight (FHB). In addition to yield and quality losses, FHB contaminates cereal grain with mycotoxins, including deoxynivalenol, which are harmful to human, animal and ecosystem health. Currently, FHB control is only partially effective due to several intractable problems. RNA interference (RNAi) is a natural mechanism that regulates gene expression. RNAi has been exploited in the development of new genomic tools that allow the targeted silencing of genes of interest in many eukaryotes. Host-induced gene silencing (HIGS) is a transgenic technology used to silence fungal genes in planta during attempted infection and thereby reduces disease levels. HIGS relies on the host plant's ability to produce mobile small interfering RNA molecules, generated from long double-stranded RNA, which are complementary to targeted fungal genes. These molecules are transferred from the plant to invading fungi via an uncharacterised mechanism, to cause gene silencing. Here, we describe recent advances in RNAi-mediated control of plant pathogenic fungi, highlighting the key advantages and disadvantages. We then discuss the developments and implications of combining HIGS with other methods of disease control. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Journal ArticleDOI
TL;DR: A hemi‐biotrophic nature of R.solani is suggested, which can be targeted by SA‐dependent plant immunity, and B. distachyon provides a genetic resource that can confer disease resistance against R. solani to plants.
Abstract: Summary Rhizoctonia solani is a soil-borne fungus causing sheath blight. In consistent with its necrotrophic life style, no rice cultivars fully resistant to R. solani are known, and agrochemical plant defense activators used for rice blast, which upregulate a phytohormonal salicylic acid (SA)-dependent pathway, are ineffective towards this pathogen. As a result of the unavailability of genetics, the infection process of R. solani remains unclear. We used the model monocotyledonous plants Brachypodium distachyon and rice, and evaluated the effects of phytohormone-induced resistance to R. solani by pharmacological, genetic and microscopic approaches to understand fungal pathogenicity. Pretreatment with SA, but not with plant defense activators used in agriculture, can unexpectedly induce sheath blight resistance in plants. SA treatment inhibits the advancement of R. solani to the point in the infection process in which fungal biomass shows remarkable expansion and specific infection machinery is developed. The involvement of SA in R. solani resistance is demonstrated by SA-deficient NahG transgenic rice and the sheath blight-resistant B. distachyon accessions, Bd3-1 and Gaz-4, which activate SA-dependent signaling on inoculation. Our findings suggest a hemi-biotrophic nature of R. solani, which can be targeted by SA-dependent plant immunity. Furthermore, B. distachyon provides a genetic resource that can confer disease resistance against R. solani to plants.

Journal ArticleDOI
TL;DR: The results indicate that developing strategies to increase melatonin levels in specialty crops such as watermelon can lead to resistance against diverse filamentous pathogens, and how application of melatonin, an environmental‐friendly immune inducer, can boost plant immunity and suppress pathogen growth where fungicide resistance and lack of genetic resistance are major problems.
Abstract: Since the 1950s, research on the animal neurohormone, melatonin, has focused on its multiregulatory effect on patients suffering from insomnia, cancer, and Alzheimer's disease. In plants, melatonin plays major role in plant growth and development, and is inducible in response to diverse biotic and abiotic stresses. However, studies on the direct role of melatonin in disease suppression and as a signaling molecule in host-pathogen defense mechanism are lacking. This study provides insight on the predicted biosynthetic pathway of melatonin in watermelon (Citrullus lanatus), and how application of melatonin, an environmental-friendly immune inducer, can boost plant immunity and suppress pathogen growth where fungicide resistance and lack of genetic resistance are major problems. We evaluated the effect of spray-applied melatonin and also transformed watermelon plants with the melatonin biosynthetic gene SNAT (serotonin N-acetyltransferase) to determine the role of melatonin in plant defense. Increased melatonin levels in plants were found to boost resistance against the foliar pathogen Podosphaera xanthii (powdery mildew), and the soil-borne oomycete Phytophthora capsici in watermelon and other cucurbits. Further, transcriptomic data on melatonin-sprayed (1 mmol/L) watermelon leaves suggest that melatonin alters the expression of genes involved in both PAMP-mediated (pathogen-associated molecular pattern) and ETI-mediated (effector-triggered immunity) defenses. Twenty-seven upregulated genes were associated with constitutive defense as well as initial priming of the melatonin-induced plant resistance response. Our results indicate that developing strategies to increase melatonin levels in specialty crops such as watermelon can lead to resistance against diverse filamentous pathogens.

Journal ArticleDOI
TL;DR: Several QTLs/genes pyramided lines with high grain Zn and acceptable yield potential are identified, which are a good resource for further evaluation to release as varieties as well as for use in breeding programs.
Abstract: The development of rice genotypes with micronutrient-dense grains and disease resistance is one of the major priorities in rice improvement programs. We conducted Genome-wide association studies (GWAS) using a Multi-parent Advanced Generation Inter-Cross (MAGIC) Plus population to identify QTLs and SNP markers that could potentially be integrated in biofortification and disease resistance breeding. We evaluated 144 MAGIC Plus lines for agronomic and biofortification traits over two locations for two seasons, while disease resistance was screened for one season in the screen house. X-ray fluorescence technology was used to measure grain Fe and Zn concentrations. Genotyping was carried out by genotype by sequencing and a total of 14,242 SNP markers were used in the association analysis. We used Mixed linear model (MLM) with kinship and detected 57 significant genomic regions with a -log10 (P- value) ≥3.0. The PH1.1 and Zn7.1 were consistently identified in all the four environments, ten QTLs qDF3.1, qDF6.2 qDF9.1 qPH5.1 qGL3.1, qGW3.1, qGW11.1 and qZn6.2 were detected in two environments, while two major loci qBLB11.1 and qBLB5.1 were identified for Bacterial Leaf Blight (BLB) resistance. The associated SNP markers were found to co-locate with known major genes and QTLs such as OsMADS50 for days to flowering, osGA20ox2 for plant height, and GS3 for grain length. Similarly, Xa4 and Xa5 genes were identified for BLB resistance and Pi5(t), Pi28(t) and Pi30(t) genes were identified for Blast resistance. A number of metal homeostasis genes OsMTP6, OsNAS3, OsMT2D, OsVIT1 and OsNRAMP7 were co-located with QTLs for Fe and Zn. The marker-trait relationships from Bayesian network analysis showed consistency with the results of GWAS. A number of promising candidate genes reported in our study can be further validated. We identified several QTLs/genes pyramided lines with high grain Zn and acceptable yield potential, which are a good resource for further evaluation to release as varieties as well as for use in breeding programs.

Journal ArticleDOI
TL;DR: It is found that N transcript levels gradually increased while miR6019 levels gradually decreased during seedling maturation that occurs in the weeks after germination, demonstrating a mechanistic role for miRNAs in regulating innate immunity during plant growth.
Abstract: Plant genomes encode large numbers of nucleotide-binding (NB) leucine-rich repeat (LRR) immune receptors (NLR) that mediate effector triggered immunity (ETI) and play key roles in protecting crops from diseases caused by devastating pathogens. Fitness costs are associated with plant NLR genes and regulation of NLR genes by micro(mi)RNAs and phased small interfering RNAs (phasiRNA) is proposed as a mechanism for reducing these fitness costs. However, whether NLR expression and NLR-mediated immunity are regulated during plant growth is unclear. We conducted genome-wide transcriptome analysis and showed that NLR expression gradually increased while expression of their regulatory small RNAs (sRNA) gradually decreased as plants matured, indicating that sRNAs could play a role in regulating NLR expression during plant growth. We further tested the role of miRNA in the growth regulation of NLRs using the tobacco mosaic virus (TMV) resistance gene N, which was targeted by miR6019 and miR6020. We showed that N-mediated resistance to TMV effectively restricted this virus to the infected leaves of 6-week old plants, whereas TMV infection was lethal in 1- and 3-week old seedlings due to virus-induced systemic necrosis. We further found that N transcript levels gradually increased while miR6019 levels gradually decreased during seedling maturation that occurs in the weeks after germination. Analyses of reporter genes in transgenic plants showed that growth regulation of N expression was post-transcriptionally mediated by MIR6019/6020 whereas MIR6019/6020 was regulated at the transcriptional level during plant growth. TMV infection of MIR6019/6020 transgenic plants indicated a key role for miR6019-triggered phasiRNA production for regulation of N-mediated immunity. Together our results demonstrate a mechanistic role for miRNAs in regulating innate immunity during plant growth.

Journal ArticleDOI
TL;DR: Transcriptional analysis of a range of genes associated with salicylic acid (SA)- or jasmonic acid - related defense, priming or basal defense against viruses revealed the induction of the SA signaling pathway in tomato after MBI600 treatment, and discrete gene expression patterns in plant response to TSWV and PVY infection.
Abstract: Plant growth promoting rhizobacteria have been proposed as effective biocontrol agents against several fungal and bacterial plant pathogens. However, there is limited knowledge regarding their effect against viruses. In this study, Bacillus amyloliquefaciens strain MBI600 (MBI600), active ingredient of the biological fungicide Serifel® (BASF SE), was tested for its antiviral action in tomato plants. Drench, foliar or soil amendment applications of MBI600 reduced up to 80% the incidence of Tomato spotted wilt virus under two different sets of environmental conditions. In addition, drench application of MBI600 delayed Potato virus Y systemic accumulation. Transcriptional analysis of a range of genes associated with salicylic acid (SA)- or jasmonic acid - related defense, priming or basal defense against viruses, revealed the induction of the SA signaling pathway in tomato after MBI600 treatment, and discrete gene expression patterns in plant response to TSWV and PVY infection.

Journal ArticleDOI
TL;DR: A new leaf rust resistance gene Lr79 has been mapped in the long arm of chromosome 3B and a linked marker was identified for marker-assisted selection of Lr 79 at both ploidy levels.
Abstract: A new leaf rust resistance gene Lr79 has been mapped in the long arm of chromosome 3B and a linked marker was identified for marker-assisted selection. Aus26582, a durum wheat landrace from the A. E. Watkins Collection, showed seedling resistance against durum-specific and common wheat-specific Puccinia triticina (Pt) pathotypes. Genetic analysis using a recombinant inbred line (RIL) population developed from a cross between Aus26582 and the susceptible parent Bansi with Australian Pt pathotype showed digenic inheritance and the underlying loci were temporarily named LrAW2 and LrAW3. LrAW2 was located in chromosome 6BS and this study focused on characterisation of LrAW3 using RILs lacking LrAW2. LrAW3 was incorporated into the DArTseq map of Aus26582/Bansi and was located in chromosome 3BL. Markers linked with LrAW3 were developed from the chromosome survey sequence contig 3B_10474240 in which closely-linked DArTseq markers 1128708 and 3948563 were located. Although bulk segregant analysis (BSA) with the 90 K Infinium array identified 51 SNPs associated with LrAW3, only one SNP-derived KASP marker mapped close to the locus. Deletion bin mapping of LrAW3-linked markers located LrAW3 between bins 3BL11-0.85-0.90 and 3BL7-0.63. Since no other all stage leaf rust resistance gene is located in chromosome 3BL, LrAW3 represented a new locus and was designated Lr79. Marker sun786 mapped 1.8 cM distal to Lr79 and Aus26582 was null for this locus. However, the marker can be reliably scored as it also amplifies a monomorphic fragment that serves as an internal control to differentiate the null status of Aus26582 from reaction failure. This marker was validated among a set of durum and common wheat cultivars and was shown to be useful for marker-assisted selection of Lr79 at both ploidy levels.

Journal ArticleDOI
TL;DR: Findings support a role for miR166k-5p in rice immunity by controlling EIN2 expression, a conserved miRNA in plants targeting the HD-ZIP III transcription factor genes.
Abstract: MicroRNAs (miRNAs) are small RNAs acting as regulators of gene expression at the post-transcriptional level. In plants, most miRNAs are generated from independent transcriptional units, and only a few polycistronic miRNAs have been described. miR166 is a conserved miRNA in plants targeting the HD-ZIP III transcription factor genes. Here, we show that a polycistronic miRNA comprising two miR166 family members, miR166k and miR166h, functions as a positive regulator of rice immunity. Rice plants with activated MIR166k-166h expression showed enhanced resistance to infection by the fungal pathogens Magnaporthe oryzae and Fusarium fujikuroi, the causal agents of the rice blast and bakanae disease, respectively. Disease resistance in rice plants with activated MIR166k-166h expression was associated with a stronger expression of defense responses during pathogen infection. Stronger induction of MIR166k-166h expression occurred in resistant but not susceptible rice cultivars. Notably, the ethylene-insensitive 2 (EIN2) gene was identified as a novel target gene for miR166k. The regulatory role of the miR166h-166k polycistron on the newly identified target gene results from the activity of the miR166k-5p specie generated from the miR166k-166h precursor. Collectively, our findings support a role for miR166k-5p in rice immunity by controlling EIN2 expression. Because rice blast is one of the most destructive diseases of cultivated rice worldwide, unraveling miR166k-166h-mediated mechanisms underlying blast resistance could ultimately help in designing appropriate strategies for rice protection.

Journal ArticleDOI
TL;DR: The economic impact, pathogen characterization, and sustainable management options for the soil-borne and foliar fungal diseases of mungbean as well as major challenges to manage these diseases are reviewed.
Abstract: Mungbean (Vigna radiata var. radiata) is a key legume crop grown predominantly in South and Southeast Asia. Biotic and abiotic stresses cause significant yield reduction in mungbean, and among these, fungal diseases are particularly important. Although disease management practices, including physical, chemical, and biological methods have been researched and described in the literature, few of these are available or have been used by growers. Here we review the economic impact, pathogen characterization, and sustainable management options for the soil-borne and foliar fungal diseases of mungbean as well as major challenges to manage these diseases. Potential use of all possible components of integrated management practices including host resistance, fungicides, biocontrol agents, natural plant products, and cultural practices etc. are discussed. Major diseases include powdery mildew, anthracnose, Cercospora leaf spot, Fusarium wilt, Rhizoctonia root rot and web blight, Macrophomina charcoal rot/dry root rot and blight. Review of the literature indicated an absence of resistance to Rhizoctonia root rot, little sources of resistance for dry root rot and anthracnose. Major resistant genes (R genes) and quantitative trait loci (QTL) were identified for powdery mildew and Cercospora leaf spot, which may be potentially used in Marker assisted selection (MAS). has been used in resistance breeding for both of the latter. Although the mechanisms of induced systemic resistance (ISR) by biocontrol agents have been studied with Macrophomina blight, there is little information on the mechanisms and use of systemic acquired resistance (SAR) in managing fungal diseases of mungbean. Several studies targeted exploiting biological control for soil-borne root rot diseases. Botanical products, such as plant extracts, are also found effective to manage root and foliar diseases. However, many of these studies were limited to laboratory and/or green house experiments. Thus, long-term field studies are required for further exploitation of biological methods and commercial applications.

Journal ArticleDOI
TL;DR: Genetic introduction of genomic fragments containing the TYNBS1 gene into susceptible tomato plants conferred TYLCV resistance, and is synonymous with the Ty-2 gene.
Abstract: An NB-LRR gene, TYNBS1, was isolated from Begomovirus-resistance locus Ty-2. Transgenic plant analysis revealed that TYNBS1 is a functional resistance gene. TYNBS1 is considered to be synonymous with Ty-2. Tomato yellow leaf curl disease caused by Tomato yellow leaf curl virus (TYLCV) is a serious threat to tomato (Solanum lycopersicum L.) production worldwide. A Begomovirus resistance gene, Ty-2, was introduced into cultivated tomato from Solanum habrochaites by interspecific crossing. To identify the Ty-2 gene, we performed genetic analysis. Identification of recombinant line 3701 confirmed the occurrence of a chromosome inversion in the Ty-2 region of the resistant haplotype. Genetic analysis revealed that the Ty-2 gene is linked to an introgression encompassing two markers, SL11_25_54277 and repeat A (approximately 200 kb). Genomic sequences of the upper and lower border of the inversion section of susceptible and resistant haplotypes were determined. Two nucleotide-binding domain and leucine-rich repeat-containing (NB-LRR) genes, TYNBS1 and TYNBS2, were identified around the upper and lower ends of the inversion section, respectively. TYNBS1 strictly co-segregated with TYLCV resistance, whereas TYNBS2 did not. Genetic introduction of genomic fragments containing the TYNBS1 gene into susceptible tomato plants conferred TYLCV resistance. These results demonstrate that TYNBS1 is a functional resistance gene for TYLCV, and is synonymous with the Ty-2 gene.

Journal ArticleDOI
TL;DR: This work demonstrates that generating transgenic wheat plants expressing RNAi‐inducing transgenes to silence essential genes in rust fungi can provide effective disease resistance, thus opening an alternative way for developing rust‐resistant crops.
Abstract: Leaf rust, caused by the pathogenic fungus Puccinia triticina (Pt), is one of the most serious biotic threats to sustainable wheat production worldwide. This obligate biotrophic pathogen is prevalent worldwide and is known for rapid adaptive evolution to overcome resistant wheat varieties. Novel disease control approaches are therefore required to minimize the yield losses caused by Pt. Having shown previously the potential of host-delivered RNA interference (HD-RNAi) in functional screening of Pt genes involved in pathogenesis, we here evaluated the use of this technology in transgenic wheat plants as a method to achieve protection against wheat leaf rust (WLR) infection. Stable expression of hairpin RNAi constructs with sequence homology to Pt MAP-kinase (PtMAPK1) or a cyclophilin (PtCYC1) encoding gene in susceptible wheat plants showed efficient silencing of the corresponding genes in the interacting fungus resulting in disease resistance throughout the T2 generation. Inhibition of Pt proliferation in transgenic lines by in planta-induced RNAi was associated with significant reduction in target fungal transcript abundance and reduced fungal biomass accumulation in highly resistant plants. Disease protection was correlated with the presence of siRNA molecules specific to targeted fungal genes in the transgenic lines harbouring the complementary HD-RNAi construct. This work demonstrates that generating transgenic wheat plants expressing RNAi-inducing transgenes to silence essential genes in rust fungi can provide effective disease resistance, thus opening an alternative way for developing rust-resistant crops.

Journal ArticleDOI
TL;DR: The differentially expressed genes identified through the mRNA transcriptome provide a revealing insight into rice molecular response to salinity stress and underlie the salinity tolerance mechanism between genotypes.
Abstract: Abiotic stresses, such as salinity, greatly threaten the growth and productivity of plants. Rice (Oryza sativa L.) is one of the most important food crops, as well as a monocot model for genomic research. To obtain a global view of the molecular response to salinity stress, we conducted a leaf transcriptome analysis on rice seedlings. Two cultivars of rice subspecies indica, including the salt-tolerant genotype Xian156 and the salt-sensitive genotype IR28, were used in the present study. Eighteen RNA libraries were obtained from these two genotypes at three timepoints (0 h, 48 h and 72 h) after applying salinity stress. We obtained the reference-guided assembly of the rice transcriptome, which resulted in 1,375 novel genes, including 1,371 annotated genes. A comparative analysis between genotypes and time points showed 5,273 differentially expressed genes (DEGs), of which 286 DEGs were only found in the tolerant genotype. The Disease resistance response protein 206 and TIFY 10 A were differentially expressed, which were validated by quantitative real-time PCR. The differentially expressed genes identified through the mRNA transcriptome, along with the structure, provide a revealing insight into rice molecular response to salinity stress and underlie the salinity tolerance mechanism between genotypes.

Journal ArticleDOI
02 Aug 2018-OENO One
TL;DR: The Inra-ResDur breeding program aims at creating varieties with durable resistance to downy and powdery mildew, and the pyramiding strategy employed to limit the risk of resistance breakdown is described.
Abstract: The current strategy to control grapevine downy and powdery mildew relies on chemical treatments. An alternative solution to the use of chemicals is the development of varieties resistant to pathogens. Several genetic factors derived from Vitis species closely related to cultivated grapevine and conferring protection against downy mildew or powdery mildew have already been identified. Nevertheless, many major resistance genes have been overcome by virulent strains of pathogens in various plant-pathogen interactions, and such resistance breakdowns have already been described in grapevine. Resistance genes are a limited resource, and their introduction in a new variety is a long-term and costly process. This is why the assessment and improvement of resistance durability is crucial, particularly in the case of a perennial species. The Inra-ResDur breeding program aims at creating varieties with durable resistance to downy and powdery mildew. The pyramiding strategy employed to limit the risk of resistance breakdown is described. Other innovative ways are proposed to enhance resistance durability.

Journal ArticleDOI
TL;DR: The results suggest that the translocated chromosome may have no distinct effect on plant height, 1000-kernel weight or flowering period, but a slight effect on spike length and seeds per spike, and the effects of the T2BS.2VL#5 recombinant chromosome on agronomic traits were evaluated.
Abstract: Pm62, a novel adult-plant resistance (APR) gene against powdery mildew, was transferred from D. villosum into common wheat in the form of Robertsonian translocation T2BS.2VL#5. Powdery mildew, which is caused by the fungus Blumeria graminis f. sp. tritici, is a major disease of wheat resulting in substantial yield and quality losses in many wheat production regions of the world. Introgression of resistance from wild species into common wheat has application for controlling this disease. A Triticum durum-Dasypyrum villosum chromosome 2V#5 disomic addition line, N59B-1 (2n = 30), improved resistance to powdery mildew at the adult-plant stage, which was attributable to chromosome 2V#5. To transfer this resistance into bread wheat, a total of 298 BC1F1 plants derived from the crossing between N59B-1 and Chinese Spring were screened by combined genomic in situ hybridization and fluorescent in situ hybridization, 2V-specific marker analysis, and reaction to powdery mildew to confirm that a dominant adult-plant resistance gene, designated as Pm62, was located on chromosome 2VL#5. Subsequently, the 2VL#5 (2D) disomic substitution line (NAU1825) and the homozygous T2BS.2VL#5 Robertsonian translocation line (NAU1823), with normal plant vigor and full fertility, were identified by molecular and cytogenetic analyses of the BC1F2 generation. The effects of the T2BS.2VL#5 recombinant chromosome on agronomic traits were also evaluated in the F2 segregation population. The results suggest that the translocated chromosome may have no distinct effect on plant height, 1000-kernel weight or flowering period, but a slight effect on spike length and seeds per spike. The translocation line NAU1823 has being utilized as a novel germplasm in breeding for powdery mildew resistance, and the effects of the T2BS.2VL#5 recombinant chromosome on yield-related and flour quality characters will be further assessed.