scispace - formally typeset
Search or ask a question

Showing papers on "Plant disease resistance published in 2020"


Journal ArticleDOI
TL;DR: The results suggest that SlWRKY8 functions as a positive regulator in plant immunity against pathogen infection as well as in plant responses to drought and salt stresses.
Abstract: WRKY transcription factors play a key role in the tolerance of biotic and abiotic stresses across various crop species, but the function of some WRKY genes, particularly in tomato, remains unexplored. Here, we characterize the roles of a previously unstudied WRKY gene, SlWRKY8, in the resistance to pathogen infection and the tolerance to drought and salt stresses. Expression of SlWRKY8 was up-regulated upon Pseudomonas syringae pv. tomato DC3000 (Pst. DC3000), abiotic stresses such as drought, salt and cold, as well as ABA and SA treatments. The SlWRKY8 protein was localized to the nucleus with no transcription activation in yeast, but it could activate W-box-dependent transcription in plants. The overexpression of SlWRKY8 in tomato conferred a greater resistance to the pathogen Pst. DC3000 and resulted in the increased transcription levels of two pathogen-related genes SlPR1a1 and SlPR7. Moreover, transgenic plants displayed the alleviated wilting or chlorosis phenotype under drought and salt stresses, with higher levels of stress-induced osmotic substances like proline and higher transcript levels of the stress-responsive genes SlAREB, SlDREB2A and SlRD29. Stomatal aperature was smaller under drought stress in transgenic plants, maintaining higher water content in leaves compared with wild-type plants. The oxidative pressure, indicated by the concentration of hydrogen peroxide (H2 O2 ) and malondialdehyde (MDA), was also reduced in transgenic plants, where we also observed higher levels of antioxidant enzyme activities under stress. Overall, our results suggest that SlWRKY8 functions as a positive regulator in plant immunity against pathogen infection as well as in plant responses to drought and salt stresses.

116 citations


Journal ArticleDOI
TL;DR: The advances made in the identification and characterization of BSR genes in various species are reviewed and their application in crop breeding is examined and the challenges and their solutions are discussed.
Abstract: Plant diseases reduce crop yields and threaten global food security, making the selection of disease-resistant cultivars a major goal of crop breeding. Broad-spectrum resistance (BSR) is a desirable trait because it confers resistance against more than one pathogen species or against the majority of races or strains of the same pathogen. Many BSR genes have been cloned in plants and have been found to encode pattern recognition receptors, nucleotide-binding and leucine-rich repeat receptors, and defense-signaling and pathogenesis-related proteins. In addition, the BSR genes that underlie quantitative trait loci, loss of susceptibility and nonhost resistance have been characterized. Here, we comprehensively review the advances made in the identification and characterization of BSR genes in various species and examine their application in crop breeding. We also discuss the challenges and their solutions for the use of BSR genes in the breeding of disease-resistant crops.

96 citations


Journal ArticleDOI
TL;DR: Results of greenhouse experiment against Sugarcane red rot indicated that inoculation of B. xiamenensis to sugarcane plants could suppress the disease symptoms and enhance plant growth, and the future application of native multi-stress tolerant bacteria as bio-control agents in combination with current heat, drought, salinity, and heavy metal tolerance strategy could contribute towards the global food security.

83 citations


Journal ArticleDOI
TL;DR: The PGPR‐mediated innovative methods are discussed, focusing on the mode of action of compounds authorized that may be significant in the development contributing to enhance plant growth, disease resistance, and serve as an efficient bioinoculants for sustainable agriculture.
Abstract: Plant growth-promoting rhizobacteria (PGPR) are diverse groups of plant-associated microorganisms, which can reduce the severity or incidence of disease during antagonism among bacteria and soil-borne pathogens, as well as by influencing a systemic resistance to elicit defense response in host plants. An amalgamation of various strains of PGPR has improved the efficacy by enhancing the systemic resistance opposed to various pathogens affecting the crop. Many PGPR used with seed treatment causes structural improvement of the cell wall and physiological/biochemical changes leading to the synthesis of proteins, peptides, and chemicals occupied in plant defense mechanisms. The major determinants of PGPR-mediated induced systemic resistance (ISR) are lipopolysaccharides, lipopeptides, siderophores, pyocyanin, antibiotics 2,4-diacetylphoroglucinol, the volatile 2,3-butanediol, N-alkylated benzylamine, and iron-regulated compounds. Many PGPR inoculants have been commercialized and these inoculants consequently aid in the improvement of crop growth yield and provide effective reinforcement to the crop from disease, whereas other inoculants are used as biofertilizers for native as well as crops growing at diverse extreme habitat and exhibit multifunctional plant growth-promoting attributes. A number of applications of PGPR formulation are needed to maintain the resistance levels in crop plants. Several microarray-based studies have been done to identify the genes, which are associated with PGPR-induced systemic resistance. Identification of these genes associated with ISR-mediating disease suppression and biochemical changes in the crop plant is one of the essential steps in understanding the disease resistance mechanisms in crops. Therefore, in this review, we discuss the PGPR-mediated innovative methods, focusing on the mode of action of compounds authorized that may be significant in the development contributing to enhance plant growth, disease resistance, and serve as an efficient bioinoculants for sustainable agriculture. The review also highlights current research progress in this field with a special emphasis on challenges, limitations, and their environmental and economic advantages.

80 citations


Journal ArticleDOI
TL;DR: The results demonstrate that a single Brassica miRNA dynamically regulates both innate immunity and plant growth and responds to viral infection, therefore demonstrating an integrative strategy for Brassica in modulating the interplay between growth, immunity and pathogen infection.

77 citations


Journal ArticleDOI
TL;DR: The results demonstrate that CRISPR/Cas9 genome-editing technology can be successfully used to induce targeted mutations in genes of interest to improve traits of economic importance, such as disease resistance in grapevines.
Abstract: Grapevine (Vitis vinifera), one of the most economically important fruit crops in the world, suffers significant yield losses from powdery mildew, a major fungal disease caused by Erysiphe necator. In addition to suppressing host immunity, phytopathogens modulate host proteins termed susceptibility (S) factors to promote their proliferation in plants. In this study, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) technology was used to enable the targeted mutagenesis of MLO (mildew resistance Locus O) family genes that are thought to serve as S factors for powdery mildew fungi. Small deletions or insertions were induced in one or both alleles of two grapevine MLO genes, VvMLO3 and VvMLO4, in the transgenic plantlets of the powdery mildew-susceptible cultivar Thompson Seedless. The editing efficiency achieved with different CRISPR/Cas9 constructs varied from 0 to 38.5%. Among the 20 VvMLO3/4-edited lines obtained, one was homozygous for a single mutation, three harbored biallelic mutations, seven were heterozygous for the mutations, and nine were chimeric, as indicated by the presence of more than two mutated alleles in each line. Six of the 20 VvMLO3/4-edited grapevine lines showed normal growth, while the remaining lines exhibited senescence-like chlorosis and necrosis. Importantly, four VvMLO3-edited lines showed enhanced resistance to powdery mildew, which was associated with host cell death, cell wall apposition (CWA) and H2O2 accumulation. Taken together, our results demonstrate that CRISPR/Cas9 genome-editing technology can be successfully used to induce targeted mutations in genes of interest to improve traits of economic importance, such as disease resistance in grapevines.

75 citations


Journal ArticleDOI
TL;DR: This study provides a better understanding of resistance genes to target for genomics‐based improvement and improved disease resistance and identified 106 RGA candidates linked to blackleg resistance quantitative trait locus.
Abstract: Methods based on single nucleotide polymorphism (SNP), copy number variation (CNV) and presence/absence variation (PAV) discovery provide a valuable resource to study gene structure and evolution. However, as a result of these structural variations, a single reference genome is unable to cover the entire gene content of a species. Therefore, pangenomics analysis is needed to ensure that the genomic diversity within a species is fully represented. Brassica napus is one of the most important oilseed crops in the world and exhibits variability in its resistance genes across different cultivars. Here, we characterized resistance gene distribution across 50 B. napus lines. We identified a total of 1749 resistance gene analogs (RGAs), of which 996 are core and 753 are variable, 368 of which are not present in the reference genome (cv. Darmor-bzh). In addition, a total of 15 318 SNPs were predicted within 1030 of the RGAs. The results showed that core R-genes harbour more SNPs than variable genes. More nucleotide binding site-leucine-rich repeat (NBS-LRR) genes were located in clusters than as singletons, with variable genes more likely to be found in clusters. We identified 106 RGA candidates linked to blackleg resistance quantitative trait locus (QTL). This study provides a better understanding of resistance genes to target for genomics-based improvement and improved disease resistance.

72 citations


Journal ArticleDOI
TL;DR: The cloning of YrU1, a stripe rust resistance gene from the diploid wheat Triticum urartu, sheds light on NLR protein function and may facilitate breeding to control the devastating wheat stripe rust disease.
Abstract: Perception of pathogenic effectors in plants often relies on nucleotide-binding domain (NBS) and leucine-rich-repeat-containing (NLR) proteins. Some NLRs contain additional domains that function as integrated decoys for pathogen effector targets and activation of immune signalling. Wheat stripe rust is one of the most devastating diseases of crop plants. Here, we report the cloning of YrU1, a stripe rust resistance gene from the diploid wheat Triticum urartu, the progenitor of the A genome of hexaploid wheat. YrU1 encodes a coiled-coil-NBS-leucine-rich repeat protein with N-terminal ankyrin-repeat and C-terminal WRKY domains, representing a unique NLR structure in plants. Database searches identify similar architecture only in wheat relatives. Transient expression of YrU1 in Nicotiana benthamiana does not induce cell death in the absence of pathogens. The ankyrin-repeat and coiled-coil domains of YrU1 self-associate, suggesting that homodimerisation is critical for YrU1 function. The identification and cloning of this disease resistance gene sheds light on NLR protein function and may facilitate breeding to control the devastating wheat stripe rust disease. Wheat stripe rust is a major disease of wheat caused by a fungal pathogen. Here the authors report the map-based cloning of YrU1, a stripe rust resistance gene from Triticum urartu, a diploid progenitor of common wheat, and show it encodes a NLR protein with unusual domain architecture

62 citations


Journal ArticleDOI
TL;DR: SIGS is used to compare the silencing efficiencies of computationally-designed vs. manually-designed dsRNA constructs targeting ARGONAUTE and DICER genes of Fusarium graminearum and finds that targeting key components of the fungal RNAi machinery via SIGS could protect barley leaves from Fg infection and that the manual design of dsRNAs resulted in higher gene-silence efficiencies than the tool-based design.
Abstract: Over the last decade, several studies have revealed the enormous potential of RNA-silencing strategies as a potential alternative to conventional pesticides for plant protection. We have previously shown that targeted gene silencing mediated by an in planta expression of non-coding inhibitory double-stranded RNAs (dsRNAs) can protect host plants against various diseases with unprecedented efficiency. In addition to the generation of RNA-silencing (RNAi) signals in planta, plants can be protected from pathogens, and pests by spray-applied RNA-based biopesticides. Despite the striking efficiency of RNA-silencing-based technologies holds for agriculture, the molecular mechanisms underlying spray-induced gene silencing (SIGS) strategies are virtually unresolved, a requirement for successful future application in the field. Based on our previous work, we predict that the molecular mechanism of SIGS is controlled by the fungal-silencing machinery. In this study, we used SIGS to compare the silencing efficiencies of computationally-designed vs. manually-designed dsRNA constructs targeting ARGONAUTE and DICER genes of Fusarium graminearum (Fg). We found that targeting key components of the fungal RNAi machinery via SIGS could protect barley leaves from Fg infection and that the manual design of dsRNAs resulted in higher gene-silencing efficiencies than the tool-based design. Moreover, our results indicate the possibility of cross-kingdom RNA silencing in the Fg-barley interaction, a phenomenon in which sRNAs operate as effector molecules to induce gene silencing between species from different kingdoms, such as a plant host and their interacting pathogens.

58 citations


Journal ArticleDOI
TL;DR: This study identified differentially accumulated phenylpropanoid and flavonoid metabolites in MdMYB88/124 transgenic RNAi plants under control and long-term drought stress conditions in apple roots, and found that metabolites responsible for plant defense accumulated less in theRNAi plants but more in the overexpression plants under both control and drought conditions.
Abstract: MdMYB88 and MdMYB124 have been demonstrated to be responsible for lignin accumulation in apple under drought stress. In this study, using a metabolomic approach, we identified differentially accumulated phenylpropanoid and flavonoid metabolites in MdMYB88/124 transgenic RNAi plants under control and long-term drought stress conditions in apple roots. We confirmed the regulation of phenylalanine by MdMYB88 and MdMYB124 via UPLC-MS in apple roots under both control and drought conditions. Using Electrophoretic Mobility Shift Assay (EMSA) and ChIP-quantitative PCR (qPCR) analyses, we found that MdMYB88 positively regulates the MdCM2 gene, which is responsible for phenylalanine biosynthesis, through binding to its promoter region. Under long-term drought conditions, MdMYB88/124 RNAi plants consistently accumulated increased amounts of H2O2 and MDA, while MdMYB88 and MdMYB124 overexpression plants accumulated decreased amounts of H2O2 and MDA. We also examined the accumulation of metabolites in the phenylpropanoid biosynthesis pathway in the leaves of MdMYB88 and MdMYB124 transgenic apple plants after long-term drought stress. We found that metabolites responsible for plant defense, including phenylpropanoids and flavonoids, accumulated less in the RNAi plants but more in the overexpression plants under both control and drought conditions. We further demonstrated that MdMYB88/124 RNAi plants were more sensitive to Alternaria alternata f. sp. mali and Valsa mali, two pathogens that currently severely threaten apple production. In contrast, MdMYB88 and MdMYB124 overexpression plants were more tolerant to these pathogens. The cumulative results of this study provided evidence for secondary metabolite regulation by MdMYB88 and MdMYB124, further explained the molecular roles of MdMYB88 and MdMYB124 in drought resistance, and provided information concerning molecular aspects of their roles in disease resistance.

54 citations


Journal ArticleDOI
TL;DR: The diploid wild cotton species Gossypium australe possesses excellent traits including resistance to disease and delayed gland morphogenesis, and has been successfully used for distant breeding programmes to incorporate disease resistance traits into domesticated cotton.
Abstract: The diploid wild cotton species Gossypium australe possesses excellent traits including resistance to disease and delayed gland morphogenesis, and has been successfully used for distant breeding programmes to incorporate disease resistance traits into domesticated cotton. Here, we sequenced the G. australe genome by integrating PacBio, Illumina short read, BioNano (DLS) and Hi-C technologies, and acquired a high-quality reference genome with a contig N50 of 1.83 Mb and a scaffold N50 of 143.60 Mb. We found that 73.5% of the G. australe genome is composed of various repeat sequences, differing from those of G. arboreum (85.39%), G. hirsutum (69.86%) and G. barbadense (69.83%). The G. australe genome showed closer collinear relationships with the genome of G. arboreum than G. raimondii and has undergone less extensive genome reorganization than the G. arboreum genome. Selection signature and transcriptomics analyses implicated multiple genes in disease resistance responses, including GauCCD7 and GauCBP1, and experiments revealed induction of both genes by Verticillium dahliae and by the plant hormones strigolactone (GR24), salicylic acid (SA) and methyl jasmonate (MeJA). Experiments using a Verticillium-resistant domesticated G. barbadense cultivar confirmed that knockdown of the homologues of these genes caused a significant reduction in resistance against Verticillium dahliae. Moreover, knockdown of a newly identified gland-associated gene GauGRAS1 caused a glandless phenotype in partial tissues using G. australe. The G. australe genome represents a valuable resource for cotton research and distant relative breeding as well as for understanding the evolutionary history of crop genomes.

Journal ArticleDOI
11 Mar 2020-PLOS ONE
TL;DR: The regulation of effector genes involved inHost defense suppression or evasion during the early infection stage, and the expression of effectors involved in host cell death in the late stage of infection provide supporting evidence for a two-phase infection model involving a brief biotrophic phase during early stages of infection.
Abstract: Sclerotinia stem rot is an economically important disease of canola (Brassica napus) and is caused by the fungal pathogen Sclerotinia sclerotiorum. This study evaluated the differential gene expression patterns of S. sclerotiorum during disease development on two canola lines differing in susceptibility to this pathogen. Sequencing of the mRNA libraries derived from inoculated petioles and mycelium grown on liquid medium generated approximately 164 million Illumina reads, including 95 million 75-bp-single reads, and 69 million 50-bp-paired end reads. Overall, 36% of the quality filter-passed reads were mapped to the S. sclerotiorum reference genome. On the susceptible line, 1301 and 1214 S. sclerotiorum genes were differentially expressed at early (8-16 hours post inoculation (hpi)) and late (24-48 hpi) infection stages, respectively, while on the resistant line, 1311 and 1335 genes were differentially expressed at these stages, respectively. Gene ontology (GO) categories associated with cell wall degradation, detoxification of host metabolites, peroxisome related activities like fatty acid s-oxidation, glyoxylate cycle, oxidoreductase activity were significantly enriched in the up-regulated gene sets on both susceptible and resistant lines. Quantitative RT-PCR of six selected DEGs further validated the RNA-seq differential gene expression analysis. The regulation of effector genes involved in host defense suppression or evasion during the early infection stage, and the expression of effectors involved in host cell death in the late stage of infection provide supporting evidence for a two-phase infection model involving a brief biotrophic phase during early stages of infection. The findings from this study emphasize the role of peroxisome related pathways along with cell wall degradation and detoxification of host metabolites as the key mechanisms underlying pathogenesis of S. sclerotiorum on B. napus.

Journal ArticleDOI
TL;DR: The findings indicate that IbBBX24 plays a pivotal role in regulating JA biosynthesis and signaling and increasing Fusarium wilt resistance and yield in sweet potato, thus providing a candidate gene for developing elite crop varieties with enhanced pathogen resistance but without yield penalty.
Abstract: Cultivated sweet potato (Ipomoea batatas) is an important source of food for both humans and domesticated animals. Here, we show that the B-box (BBX) family transcription factor IbBBX24 regulates the jasmonic acid (JA) pathway in sweet potato. When IbBBX24 was overexpressed in sweet potato, JA accumulation increased, whereas silencing this gene decreased JA levels. RNA sequencing analysis revealed that IbBBX24 modulates the expression of genes involved in the JA pathway. IbBBX24 regulates JA responses by antagonizing the JA signaling repressor IbJAZ10, which relieves IbJAZ10’s repression of IbMYC2, a JA signaling activator. IbBBX24 binds to the IbJAZ10 promoter and activates its transcription, whereas it represses the transcription of IbMYC2. The interaction between IbBBX24 and IbJAZ10 interferes with IbJAZ10’s repression of IbMYC2, thereby promoting the transcriptional activity of IbMYC2. Overexpressing IbBBX24 significantly increased Fusarium wilt disease resistance, suggesting that JA responses play a crucial role in regulating Fusarium wilt resistance in sweet potato. Finally, overexpressing IbBBX24 led to increased yields in sweet potato. Together, our findings indicate that IbBBX24 plays a pivotal role in regulating JA biosynthesis and signaling and increasing Fusarium wilt resistance and yield in sweet potato, thus providing a candidate gene for developing elite crop varieties with enhanced pathogen resistance but without yield penalty.

Journal ArticleDOI
TL;DR: This work lays the foundation to better understand host-pathogen interactions across a variety of genotypic backgrounds, and establishes that host genotype has a significant impact on spectral reflectance, and hence on biochemical and physiological traits, of plants undergoing pathogen infection.

Journal ArticleDOI
TL;DR: This review summarizes available information on different aspects of the pathogen Pt, genetics/genomics of leaf rust resistance in wheat including cloning and characterization of Lr genes and epigenetic regulation of disease resistance.

Journal ArticleDOI
TL;DR: A high-resolution GWAS detected consistent QTL for resistance to Verticillium wilt and Fusarium wilt race 4 in 376 U.S. Upland cotton accessions based on six independent replicated greenhouse tests, suggesting that these genomic regions may harbor genes in response to both diseases.
Abstract: A high-resolution GWAS detected consistent QTL for resistance to Verticillium wilt and Fusarium wilt race 4 in 376 U.S. Upland cotton accessions based on six independent replicated greenhouse tests. Verticillium wilt (VW, caused by Verticillium dahliae Kleb.) and Fusarium wilt (FOV, caused by Fusarium oxysporum f.sp. vasinfectum Atk. Sny & Hans) are the most important soil-borne fungal diseases in cotton. To augment and refine resistance quantitative trait loci (QTL), we conducted a genome-wide association study (GWAS) using high-density genotyping with the CottonSNP63K array. Resistance of 376 US Upland cotton accessions to a defoliating VW and virulent FOV4 was evaluated in four and two independent replicated greenhouse tests, respectively. A total of 15 and 13 QTL for VW and FOV4 resistances were anchored by 30 (on five chromosomes) and 56 (on six chromosomes) significant single nucleotide polymorphic (SNPs) markers, respectively. QTL on c8, c10, c16, and c21 were consistent in two or more tests for VW resistance, while two QTL on c8 and c14 were consistent for FOV4 resistance in two tests. Two QTL clusters on c16 and c19 were observed for both VW and FOV4 resistance, suggesting that these genomic regions may harbor genes in response to both diseases. Using BLAST search against the sequenced TM-1 genome, 30 and 35 candidate genes were identified on four QTL for VW resistance and on three QTL for FOV4 resistance, respectively. These genomic regions were rich in NBS-LRR genes presented in clusters. The results create opportunities for further studies to determine the correlations of field resistance with these QTL, molecular examinations of VW and FOV4 resistances, marker-assisted selection (MAS) and eventual cloning of QTL for disease resistance in cotton.

Journal ArticleDOI
TL;DR: The results indicated that replication of pathogenicity determinant betasatellite is significantly attenuated in Mac7 and probably responsible for resistance phenotype, which has important implications in understanding CLCuD resistance mechanism and developing a durable resistance in cultivated cotton.
Abstract: Cultivated cotton (Gossypium hirsutum) is the most important fibre crop in the world. Cotton leaf curl disease (CLCuD) is the major limiting factor and a threat to textile industry in India and Pakistan. All the local cotton cultivars exhibit moderate to no resistance against CLCuD. In this study, we evaluated an exotic cotton accession Mac7 as a resistance source to CLCuD by challenging it with viruliferous whiteflies and performing qPCR to evaluate the presence/absence and relative titre of CLCuD-associated geminiviruses/betasatellites. The results indicated that replication of pathogenicity determinant betasatellite is significantly attenuated in Mac7 and probably responsible for resistance phenotype. Afterwards, to decipher the genetic basis of CLCuD resistance in Mac7, we performed RNA sequencing on CLCuD-infested Mac7 and validated RNA-Seq data with qPCR on 24 independent genes. We performed co-expression network and pathway analysis for regulation of geminivirus/betasatellite-interacting genes. We identified nine novel modules with 52 hubs of highly connected genes in network topology within the co-expression network. Analysis of these hubs indicated the differential regulation of auxin stimulus and cellular localization pathways in response to CLCuD. We also analysed the differential regulation of geminivirus/betasatellite-interacting genes in Mac7. We further performed the functional validation of selected candidate genes via virus-induced gene silencing (VIGS). Finally, we evaluated the genomic context of resistance responsive genes and found that these genes are not specific to A or D sub-genomes of G. hirsutum. These results have important implications in understanding CLCuD resistance mechanism and developing a durable resistance in cultivated cotton.

Journal ArticleDOI
TL;DR: Recent advances in R gene studies in crops and wild species are reviewed and the current understanding of the molecular mechanisms underlying R gene activation and signaling, and susceptibility (S) gene-mediated resistance in crops is discussed.

Journal ArticleDOI
TL;DR: OsMYB30 binds to and activates the promoters of 4-coumarate:coenzyme A ligase genes (Os4CL3 and Os4CL5) resulting in accumulation of lignin subunits G and S, inhibiting M. oryzae penetration at the early stage of infection.
Abstract: Broad-spectrum resistance is highly preferred in crop breeding programmes. Previously, we have reported the identification of the broad-spectrum resistance-Digu 1 (bsr-d1) allele from rice Digu. The bsr-d1 allele prevents activation of Bsr-d1 expression by Magnaporthe oryzae infection and degradation of H2 O2 by peroxidases, leading to resistance to M. oryzae. However, it remains unknown whether defence pathways other than H2 O2 burst and peroxidases contribute to the bsr-d1-mediated immunity. Blast resistance was determined in rice leaves by spray and punch inoculations. Target genes of OsMYB30 were identified by one-hybrid assays in yeast and electrophoretic mobility shift assay. Lignin content was measured by phloroglucinol-HCl staining, and acetyl bromide and thioacidolysis methods. Here, we report the involvement of the OsMYB30 gene in bsr-d1-mediated blast resistance. Expression of OsMYB30 was induced during M. oryzae infection or when Bsr-d1 was knocked out or downregulated, as occurs in bsr-d1 plants upon infection. We further found that OsMYB30 bound to and activated the promoters of 4-coumarate:coenzyme A ligase genes (Os4CL3 and Os4CL5) resulting in accumulation of lignin subunits G and S. This action led to obvious thickening of sclerenchyma cells near the epidermis, inhibiting M. oryzae penetration at the early stage of infection. Our study revealed novel components required for bsr-d1-mediated resistance and penetration-dependent immunity, and advanced our understanding of broad-spectrum disease resistance.

Journal ArticleDOI
TL;DR: The results showed that the number of pyramided Yr genes was significant correlated with stripe rust resistance, and Yr-gene pyramiding lines with desirable agronomic traits were obtained for durable controlling Pst in wheat breeding.
Abstract: Stripe rust or yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. Growing resistant cultivars is the most effective approach to control the disease. There have been numerous reports on the resistance genes to stripe rust (Yr gene) in wheat, but just a few Yr genes are resistant to currently epidemic races and applied in wheat production. Gene pyramiding is considered to be an effective way to enhance durable disease resistance in crops. In this experiment, a panel of Yr gene pyramiding lines (consisting of 3–8 Yr genes) with cv. Chuanyu12 as background parent were constructed by using marker assistant selection and evaluated under currently epidemic Pst races. The results showed that the number of pyramided Yr genes was significant correlated with stripe rust resistance (p < 0.001). Yr15, Yr62 and Yr65 are effective to the current Pst races. Pyramiding more than four effective or partially effective Yr genes can provide enough resistance to stripe rust. And additive effects or epistatic effects existed in gene combinations in this study, such as Yr26 + Yr48, Yr30 + Yr64 and Yr30 + Yr48 et al. Moreover, the effects of Yr gene pyramids on currently prevalent Pst races and agronomic traits were also evaluated, and Yr-gene pyramiding lines with desirable agronomic traits were obtained for durable controlling Pst in wheat breeding.

Journal ArticleDOI
TL;DR: The cloning of a blackleg R gene from Brassica napus (canola), Rlm9, is reported, which encodes a wall‐associated kinase‐like (WAKL) protein, a newly discovered class of race‐specific plant RLK resistance genes.
Abstract: In plants, race‐specific defence against microbial pathogens is facilitated by resistance (R) genes which correspond to specific pathogen avirulence genes. This study reports the cloning of a blackleg R gene from Brassica napus (canola), Rlm9, which encodes a wall‐associated kinase‐like (WAKL) protein, a newly discovered class of race‐specific plant RLK resistance genes. Rlm9 provides race‐specific resistance against isolates of Leptosphaeria maculans carrying the corresponding avirulence gene AvrLm5‐9, representing only the second WAKL‐type R gene described to date. The Rlm9 protein is predicted to be cell membrane‐bound and while not conclusive, our work did not indicate direct interaction with AvrLm5‐9. Rlm9 forms part of a distinct evolutionary family of RLK proteins in B. napus, and while little is yet known about WAKL function, the Brassica–Leptosphaeria pathosystem may prove to be a model system by which the mechanism of fungal avirulence protein recognition by WAKL‐type R genes can be determined.

Posted ContentDOI
24 May 2020-bioRxiv
TL;DR: Analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants and these data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.
Abstract: Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues, and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus and a biotrophic oomycete. Remarkably, most cwm mutants tested (31/38; 81.6%) showed alterations in their resistance responses to at least one of these pathogens, in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted on cwm fitness traits, like biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or Microbe-Associated Molecular Patterns, which are not de-regulated in all cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in other plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.

Book ChapterDOI
01 Jan 2020
TL;DR: This chapter is summarising the systemic acquired resistance and induced systemic resistance and its role and mechanism of action against phytopathogens.
Abstract: Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are two forms of induced resistance wherein plant defences are preconditioned by prior infection or treatment that results in resistance against subsequent challenge by a pathogen or parasite Systemic acquired resistance (SAR) is a form of induced resistance that is activated throughout a plant after being exposed to elicitors from virulent, avirulent or non-pathogenic microbes or artificial chemical stimuli such as chitosan or salicylic acid (SA) Induced systemic resistance (ISR) is a resistance mechanism in plants that is activated by infection Its mode of action does not depend on direct killing or inhibition of the invading pathogen but rather on increasing physical or chemical barrier of the host plant Elicited by a local infection, plants respond with a salicylic-dependent signalling cascade that leads to the systemic expression of a broad-spectrum and long-lasting disease resistance that is efficient against fungi, bacteria and viruses In this chapter we are summarising the systemic acquired resistance and induced systemic resistance and its role and mechanism of action against phytopathogens

Journal ArticleDOI
TL;DR: Soybean has evolved a divergent flagellin receptor that recognises R. solanacearum flageLLin and enhances wilt resistance when transferred to other plants, demonstrating the potential of these receptors to enhance disease resistance in crop plants.
Abstract: In both animals and plants, the perception of bacterial flagella by immune receptors elicits the activation of defence responses. Most plants are able to perceive the highly conserved epitope flg22 from flagellin, the main flagellar protein, from most bacterial species. However, flagellin from Ralstonia solanacearum, the causal agent of the bacterial wilt disease, presents a polymorphic flg22 sequence (flg22Rso) that avoids perception by all plants studied to date. In this work, we show that soybean has developed polymorphic versions of the flg22 receptors that are able to perceive flg22Rso. Furthermore, we identify key residues responsible for both the evasion of perception by flg22Rso in Arabidopsis and the gain of perception by the soybean receptors. Heterologous expression of the soybean flg22 receptors in susceptible plant species, such as tomato, enhances resistance to bacterial wilt disease, demonstrating the potential of these receptors to enhance disease resistance in crop plants.

Journal ArticleDOI
TL;DR: It is shown that introgressed QTL can greatly improve broad-spectrum disease resistance while having only limited and inconsistent pleiotropic effects on the leaf microbiome in maize.
Abstract: Plant genotype strongly affects disease resistance, and also influences the composition of the leaf microbiome. However, these processes have not been studied and linked in the microevolutionary context of breeding for improved disease resistance. We hypothesised that broad-spectrum disease resistance alleles also affect colonisation by nonpathogenic symbionts. Quantitative trait loci (QTL) conferring resistance to multiple fungal pathogens were introgressed into a disease-susceptible maize inbred line. Bacterial and fungal leaf microbiomes of the resulting near-isogenic lines were compared with the microbiome of the disease-susceptible parent line at two time points in multiple fields. Introgression of QTL from disease-resistant lines strongly shifted the relative abundance of diverse fungal and bacterial taxa in both 3-wk-old and 7-wk-old plants. Nevertheless, the effects on overall community structure and diversity were minor and varied among fields and years. Contrary to our expectations, host genotype effects were not any stronger in fields with high disease pressure than in uninfected fields, and microbiome succession over time was similar in heavily infected and uninfected plants. These results show that introgressed QTL can greatly improve broad-spectrum disease resistance while having only limited and inconsistent pleiotropic effects on the leaf microbiome in maize.

Journal ArticleDOI
TL;DR: Functional testing using both virus-induced gene silencing and CRISPR-mediated genome editing indicated that TaN FXL1 represses F. graminearum resistance, suggesting that targeting the TaNFXL1 gene may help to develop disease resistance in cultivated wheat.
Abstract: Deoxynivalenol (DON) is a mycotoxin virulence factor that promotes growth of the Fusarium graminearum fungus in wheat floral tissues. To further our understanding of the effects of DON exposure on plant cell function, we characterized DON-induced transcriptional changes in wheat spikelets. Four hundred wheat genes were differentially expressed during infection with wild-type F. graminearum as compared with a Δtri5 mutant strain that is unable to produce DON. Most of these genes were more induced by the DON-producing strain and included genes involved in secondary metabolism, signaling, transport, and stress responses. DON induction was confirmed for a subset of the genes, including TaNFXL1, by treating tissues with DON directly. Previous work indicates that the NFXL1 ortholog represses trichothecene-induced defense responses and bacterial resistance in Arabidopsis, but the role of the NFXL family has not been studied in wheat. We observed greater DON-induced TaNFXL1 gene expression in a susceptible wheat genotype relative to the F. graminearum-resistant genotype Wuhan 1. Functional testing using both virus-induced gene silencing and CRISPR-mediated genome editing indicated that TaNFXL1 represses F. graminearum resistance. Together, this suggests that targeting the TaNFXL1 gene may help to develop disease resistance in cultivated wheat.

Journal ArticleDOI
Xue Wang1, Junjie Li1, Jing Guo1, Qian Qiao, Xianfeng Guo1, Yan Ma1 
TL;DR: It was found that the gene-silenced plants were more sensitive to A. tenuissima infection than the wild plants, exhibiting more severe infection symptoms and different degrees of changes in the expression of the pathogenesis-related (PR) genes.
Abstract: In this study, the disease resistance gene PlWRKY65 was isolated from the leaves of Paeonia lactiflora and analyzed by bioinformatics methods, and the localization of the encoded protein was explored. Quantitative real-time PCR (qRT-PCR) was also used to explore the response of this gene to Alternaria tenuissima. The results showed that the gene sequence contained multiple cis-acting elements involved in the response to hormone signaling molecules belonging to the IIe subgroup of the WRKY family, and the encoded proteins were located in the nucleus. The PlWRKY65 gene has a positive regulatory effect on A. tenuissima infection. After silencing the PlWRKY65 gene via virus-induced gene silencing (VIGS), it was found that the gene-silenced plants were more sensitive to A. tenuissima infection than the wild plants, exhibiting more severe infection symptoms and different degrees of changes in the expression of the pathogenesis-related (PR) genes. In addition, we showed that the endogenous jasmonic acid (JA) content of P. lactiflora was increased in response to A. tenuissima infection, whereas the salicylic acid (SA) content decreased. After PlWRKY65 gene silencing, the levels of the two hormones changed accordingly, indicating that PlWRKY65, acting as a disease resistance-related transcriptional activator, exerts a regulatory effect on JA and SA signals. This study lays the foundation for functional research on WRKY genes in P. lactiflora and for the discovery of candidate disease resistance genes.

Journal ArticleDOI
TL;DR: The recent cloning of Fhb1 opens a new avenue to improve FHB resistance in wheat and potentially other crops.

Journal ArticleDOI
TL;DR: Novel recently developed strategies based on advances in genome sequencing that have accelerated gene isolation by overcoming the complexity of cereal genomes are highlighted.
Abstract: The demand for cereal grains as a main source of energy continues to increase due to the rapid increase in world population. The leaf rust diseases of cereals cause significant yield losses, posing challenges for global food security. The deployment of resistance genes has long been considered as the most effective and sustainable way to control cereal leaf rust diseases. While genetic resistance has reduced the impact of these diseases in agriculture, losses still occur due to the ability of the respective rust pathogens to change and render resistance genes ineffective plus the slow pace at which resistance genes are discovered and characterized. This article highlights novel recently developed strategies based on advances in genome sequencing that have accelerated gene isolation by overcoming the complexity of cereal genomes. The leaf rust resistance genes cloned so far from wheat and barley belong to various protein families, including nucleotide binding site/leucine-rich repeat receptors and transporters. We review recent studies that are beginning to reveal the defense mechanisms conferred by the leaf rust resistance genes identified to date in cereals and their roles in either pattern-triggered immunity or effector-triggered immunity.

Journal ArticleDOI
TL;DR: The results demonstrate the prominent role of gene PAV in determining agronomic traits, suggesting that this important class of polymorphism should be exploited more systematically in future plant breeding.
Abstract: Although copy number variation (CNV) and presence-absence variation (PAV) have been discovered in selected gene families in most crop species, the global prevalence of these polymorphisms in most complex genomes is still unclear and their influence on quantitatively inherited agronomic traits is still largely unknown. Here we analyze the association of gene PAV with resistance of oilseed rape (Brassica napus) against the important fungal pathogen Verticillium longisporum, as an example for a complex, quantitative disease resistance in the strongly rearranged genome of a recent allopolyploid crop species. Using Single Nucleotide absence Polymorphism (SNaP) markers to efficiently trace PAV in breeding populations, we significantly increased the resolution of loci influencing V. longisporum resistance in biparental and multi-parental mapping populations. Gene PAV, assayed by resequencing mapping parents, was observed in 23–51% of the genes within confidence intervals of quantitative trait loci (QTL) for V. longisporum resistance, and high-priority candidate genes identified within QTL were all affected by PAV. The results demonstrate the prominent role of gene PAV in determining agronomic traits, suggesting that this important class of polymorphism should be exploited more systematically in future plant breeding.