scispace - formally typeset
Search or ask a question
Topic

Plant disease resistance

About: Plant disease resistance is a research topic. Over the lifetime, 12952 publications have been published within this topic receiving 381820 citations. The topic is also known as: plant innate immunity.


Papers
More filters
Journal ArticleDOI
TL;DR: Phylogenetic analysis of the RGAs with other cloned R genes and RGAs from various plant species indicate that they belong to a superfamily of NBS-containing genes.
Abstract: The most common class of plant disease resistance (R) genes cloned so far belong to the NBS-LRR group which contain nucleotide-binding sites (NBS) and a leucine-rich repeat (LRR). Specific primer sequences derived from a previously isolated NBS-LRR sequence at the Cre3 locus, which confers resistance to cereal cyst nematode (CCN) in wheat (Triticum aestivum L.) were used in isolating a family of resistance gene analogs (RGA) through a polymerase chain reaction (PCR) cloning approach. The cloning, analysis and genetic mapping of a family of RGAs from wheat (cv ‘Chinese Spring’) and barley (Hordeum vulgare L. cvs ‘Chebec’ and ‘Harrington’) are presented. The wheat and barley RGAs contain other conserved motifs present in known R genes from other plants and share between 55–99% amino acid sequence identity to the NBS-LRR sequence at the Cre3 locus. Phylogenetic analysis of the RGAs with other cloned R genes and RGAs from various plant species indicate that they belong to a superfamily of NBS-containing genes. Two of the barley derived RGAs were mapped onto loci on chromosomes 2H (2), 5H (7) and 7H (1) using barley doubled haploid (DH) mapping populations. Some of these loci identified are associated with regions carrying resistance to CCN and corn leaf aphid.

154 citations

Journal ArticleDOI
TL;DR: Molecular genetic analysis showed that the resistance gene in Pova was specifically located on the long arm ofchromosome 7D closely linked to one RFLP and three AFLP markers.
Abstract: Chromosomal localization and linkage mapping of a powdery mildewresistance gene were conducted in the resistant wheat line Pova, derivedfrom a Triticum aestivum cv. Poros-Aegilops ovata-alien additionline. Monosomic analysis revealed that a major dominant gene was locatedon chromosome 7D. This gene possessed a distinct disease response patternagainst a differential set of Blumeria graminis tritici isolates andsegregated independently from resistance gene Pm19 also located onwheat chromosome 7D. Molecular genetic analysis showed that theresistance gene in Pova was specifically located on the long arm ofchromosome 7D closely linked to one RFLP and three AFLP markers. It isproposed that the new gene be designated Pm29.

153 citations

Journal ArticleDOI
TL;DR: This study provides a detailed analysis of the NBS-encoding genes of the fifth sequenced angiosperm, Carica papaya, finding the papaya NBS gene family is uniquely small in size but structurally diverse, making it suitable for functional studies aimed at a broader understanding of plant resistance genes.
Abstract: The majority of plant disease resistance proteins identified to date belong to a limited number of structural classes, of which those containing nucleotide-binding site (NBS) motifs are the most common. This study provides a detailed analysis of the NBS-encoding genes of the fifth sequenced angiosperm, Carica papaya. Despite having a significantly larger genome than Arabidopsis thaliana, papaya has fewer NBS genes. Nevertheless, papaya maintains genes belonging to both Toll/interleukin-1 receptor (TIR) and non-TIR subclasses. Papaya’s NBS gene family shares most similarity with Vitis vinifera homologs, but seven non-TIR members with distinct motif sequence represent a novel subgroup. Transcript splice variants and adjacent genes encoding resistance-associated proteins may provide functional compensation for the apparent scarcity of NBS class resistance genes. Looking forward, the papaya NBS gene family is uniquely small in size but structurally diverse, making it suitable for functional studies aimed at a broader understanding of plant resistance genes.

153 citations

Journal ArticleDOI
TL;DR: It is reported that tobacco plants infected with TMV exhibited an increase in HRF in two consecutive generations, and viral infection triggers specific changes in progeny that promote higher levels of HRF at the transgene and higher resistance to stress as compared with the progeny of unstressed plants.
Abstract: Our previous experiments showed that infection of tobacco (Nicotiana tabacum) plants with Tobacco mosaic virus (TMV) leads to an increase in homologous recombination frequency (HRF). The progeny of infected plants also had an increased rate of rearrangements in resistance gene-like loci. Here, we report that tobacco plants infected with TMV exhibited an increase in HRF in two consecutive generations. Analysis of global genome methylation showed the hypermethylated genome in both generations of plants, whereas analysis of methylation via 5-methyl cytosine antibodies demonstrated both hypomethylation and hypermethylation. Analysis of the response of the progeny of infected plants to TMV, Pseudomonas syringae, or Phytophthora nicotianae revealed a significant delay in symptom development. Infection of these plants with TMV or P. syringae showed higher levels of induction of PATHOGENESIS-RELATED GENE1 gene expression and higher levels of callose deposition. Our experiments suggest that viral infection triggers specific changes in progeny that promote higher levels of HRF at the transgene and higher resistance to stress as compared with the progeny of unstressed plants. However, data reported in these studies do not establish evidence of a link between recombination frequency and stress resistance.

153 citations

Journal ArticleDOI
31 May 2015-Rice
TL;DR: The three major BB resistance genes pyramided lines exhibited high level of resistance and are expected to provide durable resistance under deep water situation where control through chemicals is less effective.
Abstract: Jalmagna is a popular deepwater rice variety with farmers of India because of its good yield under waterlogged condition. However, the variety is highly susceptible to bacterial blight (BB) disease. The development of resistant cultivars has been the most effective and economical strategy to control the disease under deepwater situation. Three resistance genes (xa5 + xa13 + Xa21) were transferred from Swarna BB pyramid line, using a marker-assisted backcrossing (MAB) breeding strategy, into the BB-susceptible elite deepwater cultivar, Jalmagna. Molecular marker integrated backcross breeding program has been employed to transfer three major BB resistance genes (Xa21, xa13 and xa5) into Jalmagna variety. During backcross generations, markers closely linked to the three genes were used to select plants possessing these resistance genes and markers polymorphic between donor and recurrent parent were used to select plants that have maximum contribution from the recurrent parent genome. A selected BC3F1 plant was selfed to generate homozygous BC3F2 plants with different combinations of BB resistance genes. The three-gene pyramid and two gene pyramid lines exhibited high levels of resistance against the BB pathogen. Under conditions of BB infection, the three-gene pyramided lines exhibited a significant yield advantage over Jalmagna. The selected pyramided lines showed all agro-morphologic traits of Jalmagna without compromising the yield. The three major BB resistance genes pyramided lines exhibited high level of resistance and are expected to provide durable resistance under deep water situation where control through chemicals is less effective. High similarity in agro-morphologic traits and absence of antagonistic effects for yield and other characters were observed in the best pyramided lines.

152 citations


Network Information
Related Topics (5)
Hordeum vulgare
20.3K papers, 717.5K citations
89% related
Shoot
32.1K papers, 693.3K citations
88% related
Seedling
28.6K papers, 478.2K citations
88% related
Germination
51.9K papers, 877.9K citations
87% related
Auxin
10.7K papers, 502.6K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023377
2022756
2021410
2020438
2019526
2018640