scispace - formally typeset
Search or ask a question
Topic

Plant disease resistance

About: Plant disease resistance is a research topic. Over the lifetime, 12952 publications have been published within this topic receiving 381820 citations. The topic is also known as: plant innate immunity.


Papers
More filters
Journal ArticleDOI
TL;DR: Segregation ratios for resistance in F2 of BL × CASL 2BS and in the recombinant lines, combined with the susceptability of F1 progeny to all tested isolates, indicate that resistance is controlled by a single recessive allele.
Abstract: An Israeli accession (TTD140) of wild emmer, Triticum turgidum var. dicoccoides, was found resistant to several races of powdery mildew. Inoculation of the chromosome-arm substitution lines (CASLs) of TTD140, in the background of the Israeli common wheat cultivar ‘Bethlehem’ (BL), with five isolates of powdery mildew revealed that only the line carrying the short arm of chromosome 2B of wild emmer (CASL 2BS) exhibited complete resistance to four of the five isolates. To map and tag the powdery mildew resistance gene, 41 recombinant substitution lines, derived from a cross between BL and CASL 2BS, were used to construct a linkage map at the gene region. The map, which encompasses 69.5 cM of the distal region of chromosome arm 2BS, contains six RFLP markers, a morphological marker (glaucousness inhibitor, W1 I), and the powdery mildew resistance gene. Segregation ratios for resistance in F2 of BL × CASL 2BS and in the recombinant lines, combined with the susceptability of F1 progeny to all tested isolates, indicate that resistance is controlled by a single recessive allele. This alleleco-segregated with a polymorphic locus detected by the DNA marker Xwg516, 49.4 cM from the terminal marker Xcdo456. The new powdery mildew resistance gene was designated Pm26.

152 citations

01 Jan 2000

152 citations

Journal ArticleDOI
TL;DR: The results demonstrate that manipulation of the active free SA pool via SA-inactivating enzymes can be a useful strategy for fortifying plant disease resistance and may identify useful crop protectants.
Abstract: Plant activators are compounds, such as analogs of the defense hormone salicylic acid (SA), that protect plants from pathogens by activating the plant immune system. Although some plant activators have been widely used in agriculture, the molecular mechanisms of immune induction are largely unknown. Using a newly established high-throughput screening procedure that screens for compounds that specifically potentiate pathogen-activated cell death in Arabidopsis thaliana cultured suspension cells, we identified five compounds that prime the immune response. These compounds enhanced disease resistance against pathogenic Pseudomonas bacteria in Arabidopsis plants. Pretreatments increased the accumulation of endogenous SA, but reduced its metabolite, SA-O-β-d-glucoside. Inducing compounds inhibited two SA glucosyltransferases (SAGTs) in vitro. Double knockout plants that lack both SAGTs consistently exhibited enhanced disease resistance. Our results demonstrate that manipulation of the active free SA pool via SA-inactivating enzymes can be a useful strategy for fortifying plant disease resistance and may identify useful crop protectants.

152 citations

Journal ArticleDOI
TL;DR: The leaf rust resistance gene in RL6077 is phenotypically similar to Lr34 which is located on chromosome 7D, but this gene is not involved in any translocation carried by RL60 77 and has been assigned the name Lr67.
Abstract: Adult plant resistance (APR) to leaf rust and stripe rust derived from the wheat (Triticum aestivum L.) line PI250413 was previously identified in RL6077 (=Thatcher*6/PI250413). The leaf rust resistance gene in RL6077 is phenotypically similar to Lr34 which is located on chromosome 7D. It was previously hypothesized that the gene in RL6077 could be Lr34 translocated to another chromosome. Hybrids between RL6077 and Thatcher and between RL6077 and 7DS and 7DL ditelocentric stocks were examined for first meiotic metaphase pairing. RL6077 formed chain quadrivalents and trivalents relative to Thatcher and Chinese Spring; however both 7D telocentrics paired only as heteromorphic bivalents and never with the multivalents. Thus, chromosome 7D is not involved in any translocation carried by RL6077. A genome-wide scan of SSR markers detected an introgression from chromosome 4D of PI250413 transferred to RL6077 through five cycles of backcrossing to Thatcher. Haplotype analysis of lines from crosses of Thatcher × RL6077 and RL6058 (Thatcher*6/PI58548) × RL6077 showed highly significant associations between introgressed markers (including SSR marker cfd71) and leaf rust resistance. In a separate RL6077-derived population, APR to stripe rust was also tightly linked with cfd71 on chromosome 4DL. An allele survey of linked SSR markers cfd71 and cfd23 on a set of 247 wheat lines from diverse origins indicated that these markers can be used to select for the donor segment in most wheat backgrounds. Comparison of RL6077 with Thatcher in field trials showed no effect of the APR gene on important agronomic or quality traits. Since no other known Lr genes exist on chromosome 4DL, the APR gene in RL6077 has been assigned the name Lr67.

152 citations

Journal ArticleDOI
TL;DR: It is concluded that convergent evolution, rather than the conservation of an ancient specificity, is responsible for the generation of these AvrB-specific genes.
Abstract: Plant disease resistance (R) genes that mediate recognition of the same pathogen determinant sometimes can be found in distantly related plant families. This observation implies that some R gene alleles may have been conserved throughout the diversification of land plants. To address this question, we have compared R genes from Glycine max (soybean), Rpg1-b, and Arabidopsis thaliana, RPM1, that mediate recognition of the same type III effector protein from Pseudomonas syringae, AvrB. RPM1 has been cloned previously, and here, we describe the isolation of Rpg1-b. Although RPM1 and Rpg1-b both belong to the coiled-coil nucleotide binding site (NBS) Leu-rich repeat (LRR) class of R genes, they share only limited sequence similarity outside the conserved domains characteristic of this class. Phylogenetic analyses of A. thaliana and legume NBS-LRR sequences demonstrate that Rpg1-b and RPM1 are not orthologous. We conclude that convergent evolution, rather than the conservation of an ancient specificity, is responsible for the generation of these AvrB-specific genes.

152 citations


Network Information
Related Topics (5)
Hordeum vulgare
20.3K papers, 717.5K citations
89% related
Shoot
32.1K papers, 693.3K citations
88% related
Seedling
28.6K papers, 478.2K citations
88% related
Germination
51.9K papers, 877.9K citations
87% related
Auxin
10.7K papers, 502.6K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023377
2022756
2021410
2020438
2019526
2018640