scispace - formally typeset
Search or ask a question
Topic

Plant disease resistance

About: Plant disease resistance is a research topic. Over the lifetime, 12952 publications have been published within this topic receiving 381820 citations. The topic is also known as: plant innate immunity.


Papers
More filters
Journal ArticleDOI
TL;DR: Analysis of phytohormone-related transcripts in the susceptible response showed different hormone profiles for the two time points, and suggest that aphids are able to suppress hormone signals in susceptible plants.
Abstract: The soybean aphid (Aphis glycines) is a major phloem-feeding pest of soybean (Glycine max). A. glycines feeding can cause the diversion of photosynthates and transmission of plant viruses, resulting in significant yield losses. In this study, we used oligonucleotide microarrays to characterize the long-term transcriptional response to soybean aphid colonization of two related soybean cultivars, one with the Rag1 aphid-resistance gene and one aphid-susceptible cultivar (without Rag1). Transcriptome profiles were determined after 1 and 7 days of aphid infestation. Our results revealed a susceptible response involving hundreds of transcripts, whereas only one transcript changed in the resistant response to aphids. This nonexistent resistance response might be explained by the fact that many defense-related transcripts are constitutively expressed in resistant plants, whereas these same genes are activated in susceptible plants only during aphid infestation. Analysis of phytohormone-related transcripts in the susceptible response showed different hormone profiles for the two time points, and suggest that aphids are able to suppress hormone signals in susceptible plants. A significant activation of abscissic acid, normally associated with abiotic stress responses, at day 7, might be a decoy strategy implemented by the aphid to suppress effective salicylic acid- and jasmonate-related defenses.

93 citations

Journal ArticleDOI
TL;DR: The results of in vitro, in planta and microscopic analyses suggest that Dm-AMP1 expression has the potential to provide broad-spectrum disease resistance in rice.
Abstract: Magnaporthe oryzae and Rhizoctonia solani, are among the most important pathogens of rice, severely limiting its productivity. Dm-AMP1, an antifungal plant defensin from Dahlia merckii, was expressed in rice (Oryza sativa L. sp. indica cv. Pusa basmati 1) using Agrobacterium tumefaciens-mediated transformation. Expression levels of Dm-AMP1 ranged from 0.43% to 0.57% of total soluble protein in transgenic plants. It was observed that constitutive expression of Dm-AMP1 suppresses the growth of M. oryzae and R. solani by 84% and 72%, respectively. Transgenic expression of Dm-AMP1 was not accompanied by an induction of pathogenesis-related (PR) gene expression, indicating that the expression of DmAMP1 directly inhibits the pathogen. The results of in vitro, in planta and microscopic analyses suggest that Dm-AMP1 expression has the potential to provide broad-spectrum disease resistance in rice.

93 citations

Journal ArticleDOI
TL;DR: Rice yellow mottle virus resistance QTLs were mapped in a doubled-haploid population of rice, ‘IR64/Azucena’ and the semi-dwarfing gene sd-1, on chromosome 1, provided by the susceptible parent, ’IR64’, was found to be independent of plant morphology.
Abstract: Rice yellow mottle virus (RYMV) resistance QTLs were mapped in a doubled-haploid population of rice, ‘IR64/Azucena’. Disease impact on plant morphology and development, expression of symptoms and virus content were evaluated in field conditions. Virus content was also assessed in a growth chamber. RYMV resistance was found to be under a polygenic determinism, and 15 QTLs were detected on seven chromosomal fragments. For all of the resistance QTLs detected, the favourable allele was provided by the resistant parent ‘Azucena’. Three regions were determined using different resistance parameters and in two environments. On chromosome 12, a QTL of resistance that had already been detected in this population and another indica/japonica population was confirmed both in the field and under controlled conditions. Significant correlations were observed between resistance and tillering ability, as measured on control non-inoculated plants. In addition, the three genomic fragments involved in resistance were also involved in plant architecture and development. In particular, the semi-dwarfing gene sd-1, on chromosome 1, provided by the susceptible parent, ‘IR64’, mapped in a region where resistance QTLs were detected with most of the resistance parameters. In contrast, the QTL of resistance mapped on chromosome 12 was found to be independent of plant morphology.

93 citations

Journal ArticleDOI
TL;DR: This is the first study identifying a crucial role of phenol metabolism in internal defense of B. napus against V. longisporum and locating the crucial defense responses in the plant hypocotyl.
Abstract: Verticillium longisporum is a vascular fungal pathogen presently threatening oilseed rape production in Europe. Systemic spread and vascular responses were studied in a susceptible (‘Falcon’) and a resistant genotype (SEM 05-500256) of Brassica napus. Colonization of both genotypes after dip-inoculation of the roots followed by quantitative polymerase chain reaction revealed similarities only in the initial stages of root penetration and colonization of the hypocotyl, while a substantial invasion of the shoot was only recorded in ‘Falcon’. It is concluded that the type of resistance represented in SEM 05-500256 does not prevent the plant base from being invaded as it is internally expressed well after root penetration and colonization of the plant base. The morphological and biochemical nature of barriers induced in the hypocotyl tissue upon infection was studied with histochemical methods accompanied by biochemical analyses. Histochemical studies revealed the build-up of vascular occlusions and ...

93 citations

Journal ArticleDOI
TL;DR: Observations indicate that colonization by beneficial and/or infection by pathogenic microorganisms dictates many of the outcomes in plants, which are more complex than previously thought.
Abstract: Fungi belonging to the genus Trichoderma, commonly found in soil or colonizing plant roots, exert beneficial effects on plants, including the promotion of growth and the induction of resistance to disease. T. virens and T. atroviride secrete the proteins Sm1 and Epl1, respectively, which elicit local and systemic disease resistance in plants. In this work, we show that these fungi promote growth in tomato (Solanum lycopersicum) plants. T. virens was more effective than T. atroviride in promoting biomass gain, and both fungi were capable of inducing systemic protection in tomato against Alternaria solani, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst DC3000). Deletion (KO) of epl1 in T. atroviride resulted in diminished systemic protection against A. solani and B. cinerea, whereas the T. virens sm1 KO strain was less effective in protecting tomato against Pst DC3000 and B. cinerea. Importantly, over-expression (OE) of epl1 and sm1 led to an increase in disease resistance against all tested pathogens. Although the Trichoderma WT strains induced both systemic acquired resistance (SAR)- and induced systemic resistance (ISR)-related genes in tomato, inoculation of plants with OE and KO strains revealed that Epl1 and Sm1 play a minor role in the induction of these genes. However, we found that Epl1 and Sm1 induce the expression of a peroxidase and an α-dioxygenase encoding genes, respectively, which could be important for tomato protection by Trichoderma spp. Altogether, these observations indicate that colonization by beneficial and/or infection by pathogenic microorganisms dictates many of the outcomes in plants, which are more complex than previously thought.

93 citations


Network Information
Related Topics (5)
Hordeum vulgare
20.3K papers, 717.5K citations
89% related
Shoot
32.1K papers, 693.3K citations
88% related
Seedling
28.6K papers, 478.2K citations
88% related
Germination
51.9K papers, 877.9K citations
87% related
Auxin
10.7K papers, 502.6K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023377
2022756
2021410
2020438
2019526
2018640