scispace - formally typeset
Search or ask a question
Topic

Plant disease resistance

About: Plant disease resistance is a research topic. Over the lifetime, 12952 publications have been published within this topic receiving 381820 citations. The topic is also known as: plant innate immunity.


Papers
More filters
Journal ArticleDOI
TL;DR: The multiple functions of avrPphF illustrate how effector proteins from plant pathogens have evolved to be recognized by R gene products and, therefore, be classified as encoded by avirulence genes.
Abstract: The avrPphF gene was cloned from Pseudomonas syringae pathovar phaseolicola (Pph) races 5 and 7, based on its ability to confer avirulence towards bean cultivars carrying the R1 gene for halo-blight resistance, such as Red Mexican. avrPphF comprised two open reading frames, which were both required for function, and was located on a 154 kb plasmid (pAV511) in Pph. Strain RW60 of Pph, lacking pAV511, displayed a loss in virulence to a range of previously susceptible cultivars such as Tendergreen and Canadian Wonder. In Tendergreen virulence was restored to RW60 by avrPphF alone, whereas subcloned avrPphF in the absence of pAV511 greatly accelerated the hypersensitive resistance reaction caused by RW60 in Canadian Wonder. A second gene from pAV511, avrPphC, which controls avirulence to soybean, was found to block the activity of avrPphF in Canadian Wonder, but not in Red Mexican. avrPphF also conferred virulence in soybean. The multiple functions of avrPphF illustrate how effector proteins from plant pathogens have evolved to be recognized by R gene products and, therefore, be classified as encoded by avirulence genes.

221 citations

Journal ArticleDOI
TL;DR: The treasure trove of disease resistance genes present in wild relatives of domesticated crops is rapidly discovered using association genetics and enrichment sequencing.
Abstract: Disease resistance (R) genes from wild relatives could be used to engineer broad-spectrum resistance in domesticated crops. We combined association genetics with R gene enrichment sequencing (AgRenSeq) to exploit pan-genome variation in wild diploid wheat and rapidly clone four stem rust resistance genes. AgRenSeq enables R gene cloning in any crop that has a diverse germplasm panel.

220 citations

Journal ArticleDOI
TL;DR: Findings include the identification of three avirulence genes in F. oxysporum f.
Abstract: The interaction between tomato and Fusarium oxysporum f. sp. lycopersici has become a model system for the study of the molecular basis of disease resistance and susceptibility. Gene-for-gene interactions in this system have provided the basis for the development of tomato cultivars resistant to Fusarium wilt disease. Over the last 6 years, new insights into the molecular basis of these gene-for-gene interactions have been obtained. Highlights are the identification of three avirulence genes in F. oxysporum f. sp. lycopersici and the development of a molecular switch model for I-2, a nucleotide-binding and leucine-rich repeat-type resistance protein which mediates the recognition of the Avr2 protein. We summarize these findings here and present possible scenarios for the ongoing molecular arms race between tomato and F. oxysporum f. sp. lycopersici in both nature and agriculture.

220 citations

Book ChapterDOI
TL;DR: Recent work carried out to characterize loss-of-susceptibility and recessive resistance genes in crop and model species suggests that more extensive characterization of the natural variability of resistance genes may identify new host factors conferring recessives resistance.
Abstract: About half of the approximately 200 known virus resistance genes in plants are recessively inherited, suggesting that this form of resistance is more common for viruses than for other plant pathogens. The use of such genes is therefore a very important tool in breeding programs to control plant diseases caused by pathogenic viruses. Over the last few years, the detailed analysis of many host/virus combinations has substantially advanced basic research on recessive resistance mechanisms in crop species. This type of resistance is preferentially expressed in protoplasts and inoculated leaves, influencing virus multiplication at the single-cell level as well as cell-to-cell movement. Importantly, a growing number of recessive resistance genes have been cloned from crop species, and further analysis has shown them all to encode translation initiation factors of the 4E (eIF4E) and 4G (eIF4G) families. However, not all of the loss-of-susceptibility mutants identified in collections of mutagenized hosts correspond to mutations in eIF4E and eIF4G. This, together with other supporting data, suggests that more extensive characterization of the natural variability of resistance genes may identify new host factors conferring recessive resistance. In this chapter, we discuss the recent work carried out to characterize loss-of-susceptibility and recessive resistance genes in crop and model species. We review actual and probable recessive resistance mechanisms, and bring the chapter to a close by summarizing the current state-of-the-art and offering perspectives on potential future developments.

220 citations

Journal ArticleDOI
TL;DR: Six quantitative trait loci (QTLs) contributing to resistance to R. solani were identified and one of these resistance QTLs appeared to be independent of associated morphological traits, which was consistent with the observation that heading date and plant height accounted for 47% of the genotypic variation in resistance in this population of rice.
Abstract: Sheath blight, caused by Rhizoctonia solani, is one of the most important diseases of rice. Despite extensive searches of the rice germ plasm, the major gene(s) which give complete resistance to the fungus have not been identified. However, there is much variation in quantitatively inherited resistance to R. solani, and this type of resistance can offer adequate protection against the pathogen under field conditions. Using 255 F4 bulked populations from a cross between the susceptible variety ‘Lemont’ and the resistant variety ‘Teqing’, 2 years of field disease evaluation and 113 well-distributed RFLP markers, we identified six quantitative trait loci (QTLs) contributing to resistance to R. solani. These QTLs are located on 6 of the 12 rice chromosomes and collectively explain approximately 60% of the genotypic variation or 47% of the phenotypic variation in the ‘Lemont’x‘Teqing’ cross. One of these resistance QTLs (QSbr4a), which accounted for 6% of the genotypic variation in resistance to R. solani, appeared to be independent of associated morphological traits. The remaining five putative resistance loci (QSbr2a, QSbr3a, QSbr8a, QSbr9a and QSbr12a) all mapped to chromosomal regions also associated with increased plant height, three of which were also associated with QTLs causing later heading. This was consistent with the observation that heading date and plant height accounted for 47% of the genotypic variation in resistance to R. solani in this population. There were also weak associations between resistance to R. solani and leaf width, which were likely due to linkage with a QTL for this trait rather than to a physiological relationship.

219 citations


Network Information
Related Topics (5)
Hordeum vulgare
20.3K papers, 717.5K citations
89% related
Shoot
32.1K papers, 693.3K citations
88% related
Seedling
28.6K papers, 478.2K citations
88% related
Germination
51.9K papers, 877.9K citations
87% related
Auxin
10.7K papers, 502.6K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023377
2022756
2021410
2020438
2019526
2018640