scispace - formally typeset
Search or ask a question
Topic

Plant disease resistance

About: Plant disease resistance is a research topic. Over the lifetime, 12952 publications have been published within this topic receiving 381820 citations. The topic is also known as: plant innate immunity.


Papers
More filters
Journal ArticleDOI
TL;DR: This work demonstrates that the potato StWhy1 protein is a transcriptional activator of genes containing the PBF2 binding PB promoter element, and adds a critical component to the SA-dependent plant disease resistance response.

193 citations

Journal ArticleDOI
TL;DR: One of the ACRE genes, which encodes a Ser/Thr protein kinase called Avr9/Cf-9 induced kinase 1 (ACIK1), was found to be required for Cf-9/Avr9- and Cf-4/ Avr4-mediated HRs but not for the HR or resistance mediated by other resistance/Av r systems, such as Pto/AvRPto, Rx/Potato virus X, or N/T
Abstract: Tomato (Lycopersicon esculentum) Cf genes confer resistance to the fungal pathogen Cladosporium fulvum through recognition of secreted avirulence (Avr) peptides. Plant defense responses, including rapid alterations in gene expression, are immediately activated upon perception of the pathogen. Previously, we identified a collection of Avr9/Cf-9 rapidly (15 to 30 min) elicited (ACRE) genes from tobacco (Nicotiana tabacum). Many of the ACRE genes encode putative signaling components and thus may play pivotal roles in the initial development of the defense response. To assess the requirement of 42 of these genes in the hypersensitive response (HR) induced by Cf-9/Avr9 or by Cf-4/Avr4, we used virus-induced gene silencing (VIGS) in N. benthamiana. Three genes were identified that when silenced compromised the Cf-mediated HR. We further characterized one of these genes, which encodes a Ser/Thr protein kinase called Avr9/Cf-9 induced kinase 1 (ACIK1). ACIK1 mRNA was rapidly upregulated in tobacco and tomato upon elicitation by Avr9 and by wounding. Silencing of ACIK1 in tobacco resulted in a reduced HR that correlated with loss of ACIK1 transcript. Importantly, ACIK1 was found to be required for Cf-9/Avr9- and Cf-4/Avr4-mediated HRs but not for the HR or resistance mediated by other resistance/Avr systems, such as Pto/AvrPto, Rx/Potato virus X, or N/Tobacco mosaic virus. Moreover, VIGS of LeACIK1 in tomato decreased Cf-9–mediated resistance to C. fulvum, showing the importance of ACIK1 in disease resistance.

193 citations

Journal ArticleDOI
TL;DR: The overall similarity between the Sw-5 and Mi proteins of tomato suggests that a shared or comparable signal transduction pathway leads to both virus and nematode resistance in tomato, and supports the hypothesis that Sw- 5 provides resistance via a hypersensitive response.
Abstract: We used a positional cloning approach to isolate the Sw-5 disease resistance locus of tomato. Complementation experiments with overlapping cosmid clones enabled us to demonstrate that Sw-5 is a single gene locus capable of recognizing several tospovirus isolates and species. Analysis of the predicted Sw-5 protein suggests that it is a cytoplasmic protein, with a potential nucleotide binding site (NBS) domain and a C-terminal end consisting of leucine-rich repeats (LRRs). Based on its structural features, Sw-5 belongs to the class of NBS-LRR resistance genes that includes the tomato Mi, 12, and Prf genes; the Arabidopsis RPM1 gene; and the plant potato virus X resistance gene Rx. The overall similarity between the Sw-5 and Mi proteins of tomato suggests that a shared or comparable signal transduction pathway leads to both virus and nematode resistance in tomato. The similarity also supports the hypothesis that Sw-5 provides resistance via a hypersensitive response. Sw-5 is a member of a loosely clustered gene family in the telomeric region of chromosome 9. Members of this family map to other regions of chromosome 9 and also to chromosome 12, where several fungal, virus, and nematode genes have been mapped, suggesting that paralogs of Sw-5 may have evolved to provide different resistance specificities.

192 citations

Journal ArticleDOI
TL;DR: A targeted approach for molecular utilization of gene bank accessions reveals landraces as a rich resource of new functional alleles, and can be implemented for other studies on the molecular diversity of agriculturally important genes, as well as for molecular breeding.
Abstract: The continuous improvement of crop plants is essential for agriculture in the coming decades and relies on the use of genetic variability through breeding. However, domestication and modern breeding have reduced diversity in the crop germplasm. Global gene banks conserve diversity, but these resources remain underexplored owing to a lack of efficient strategies to isolate important alleles. Here we describe a large-scale allele-mining project at the molecular level. We first selected a set of 1,320 bread wheat landraces from a database of 16,089 accessions, using the focused identification of germplasm strategy. On the basis of a hierarchical selection procedure on this set, we then isolated 7 resistance alleles of the powdery mildew resistance gene Pm3, doubling the known functional allelic diversity at this locus. This targeted approach for molecular utilization of gene bank accessions reveals landraces as a rich resource of new functional alleles. This strategy can be implemented for other studies on the molecular diversity of agriculturally important genes, as well as for molecular breeding.

192 citations

Journal ArticleDOI
31 May 2012-Silence
TL;DR: This review focuses on the application of RNA silencing to produce plants that are resistant to plant viruses such as RNA and DNA viruses, viroids, insects, and the recent expansion to fungal pathogens.
Abstract: To reduce the losses caused by plant pathogens, plant biologists have adopted numerous methods to engineer resistant plants. Among them, RNA silencing-based resistance has been a powerful tool that has been used to engineer resistant crops during the last two decades. Based on this mechanism, diverse approaches were developed. In this review, we focus on the application of RNA silencing to produce plants that are resistant to plant viruses such as RNA and DNA viruses, viroids, insects, and the recent expansion to fungal pathogens.

192 citations


Network Information
Related Topics (5)
Hordeum vulgare
20.3K papers, 717.5K citations
89% related
Shoot
32.1K papers, 693.3K citations
88% related
Seedling
28.6K papers, 478.2K citations
88% related
Germination
51.9K papers, 877.9K citations
87% related
Auxin
10.7K papers, 502.6K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023377
2022756
2021410
2020438
2019526
2018640