scispace - formally typeset
Search or ask a question
Topic

Plant morphology

About: Plant morphology is a research topic. Over the lifetime, 1174 publications have been published within this topic receiving 24418 citations. The topic is also known as: phytomorphology & morphology of higher plants.


Papers
More filters
01 Jan 2000

6 citations

Journal ArticleDOI
TL;DR: The synergistic effects of the combination of PBZ and supplemental lighting resulted in the most compact plants, caused by a reduction in plant height byPBZ and an increase in dry mass by SL, however, PBZ reduced shoot dry mass of most plant species and light combinations.
Abstract: Under light-limiting conditions, many ornamental greenhouse-grown plants show undesired morphological characteristics, such as plant elongation (hypocotyl and epicotyl length) and low dry mass, which reduce plant quality. Research has shown that use of plant growth regulators (PGRs) and changes in both light intensity and spectral composition can reduce these undesired characteristics. However, little is known about the role of the combined effects of supplemental lighting and PGRs on the production of ornamental seedlings. The objective of this study was to characterize the combined and independent effects of light intensity, spectral composition, and PGR applications on the greenhouse production of ornamental transplants. Petunia (Petunia × hybrida), geranium (Pelargonium × hortorum), pansy (Viola × wittrockiana) and dianthus (Dianthus chinensis) were grown for 32–42 days under three supplemental light (SL) treatments: 1) high-pressure sodium (HPS), 2) light-emitting diodes (LEDs) with a 6 blue (B):5 green (G):89 red (R) (percent photon flux ratio), and 3) LEDs with 19B:81R (100 μmol m−2 s−1, 18 h photoperiod for all treatments). A control (No SL) was also included. In addition, a portion of plants were also sprayed with the paclobutrazol PGR (PBZ and No PBZ). The synergistic effects of the combination of PBZ and supplemental lighting resulted in the most compact plants, caused by a reduction in plant height by PBZ and an increase in dry mass by SL. However, PBZ reduced shoot dry mass of most plant species and light combinations. Plant compactness was greater under the 6B:5G:89R LED composition for petunia and when combined with PBZ for geranium than for plants under HPS lighting. Root dry mass of petunia, geranium, and pansy plants increased in response to SL compared with no SL by 2.4–5.7-fold. Results from the two LED spectra were unexpected; plants under 6B:5G:89R were more compact (petunia, geranium), had higher anthocyanin concentrations (petunia), were shorter (petunia, pansy, dianthus) and had less leaf area (petunia, pansy, dianthus) than plants in the SL treatment with a higher B and lower G PF (19B:81R). Supplemental lighting and PBZ can be used in conjunction or independently to improve plant morphology. The increased light from SL provided the most benefits by improving dry mass, compactness, and leaf number for most plant species. However, when PBZ was used in combination with SL, plant compactness increased for some species. The spectral composition of SL had an impact on plant growth and morphology, warranting additional research on plant responses to small changes in the spectral composition of SL.

6 citations

01 Jan 2009
TL;DR: An experiment was conducted during winter seasons on morphological characters of Lentil enoculated with PSB, finding that dry weight/plant is more in inoculated JL-3 and NDL-92 plants as compared to control.
Abstract: An experiment was conducted during winter seasons on morphological characters of Lentil (Lens culinaris Medic.) enoculated with PSB. PSB (10gm, 20gm and 30gm) in 2Kg of soil and one control. In variety NDL-92 with the application of PSB plant height/plant increases from control. In JL-3 variety plant Height/Plant increases with the treatment of PSB as compared to control number of Branches/Plant in NDL-92 variety increases with the inoculation of PSB and in control number of Branches/Plant are less than of JL-3 variety with the increase of PSB number of Branches per plant increase as compared to control. Number of Flowers per plant is more in both variety JL-3 and NDL-92 inoculated with PSB as compared to control. Number of Pods per plant are more in both varieties JL-3 and NDL-92 inoculated as compared to control. Dry weight/plant is more in inoculated JL-3 and NDL-92 plants as compared to control.

6 citations

Journal ArticleDOI
TL;DR: This work characterized the morphophysiological responses of Coffea arabica L. cultivars subjected to different spacing between plants within rows and suggested that all tested cultivars exhibit high morphophysical plasticity and have the potential to grow under different plant spacing within rows.
Abstract: Changes in spacing within rows may alter the morphology of the coffee plant by affecting the physiological constituents of its productivity. Even though some common plant responses to crop spacing variation are known, there is yet no scientific evidence that elucidates the effects of decreased spacing on the sourcesink relation in plagiotropic branches and, its association with both productivity and eco-physiological aspects of coffee leaves, mainly for new coffee cultivars in the Brazilian savannah. The aim of this work was to characterize the morphophysiological responses of Coffea arabica L. cultivars subjected to different spacing between plants within rows. Four Arabica coffee cultivars (Catuai Vermelho IAC 144, Catuai Amarelo IAC 62, Catuai Amarelo IAC 32, and Tupi RN IAC 1669-13) were transplanted in January 2010. A row spacing of 0.40, 0.50, 0.60, 0.70, and 0.80 m was adopted between plants, maintaining a 3.80-m constant between rows. A randomized block design with four replicates was applied. During the experimental period, several morphophysiological characteristics of plagiotropic fruiting branches were evaluated in the months of April and December in 2013 and, in April 2014. The evaluation was conducted based on two canopy positions; canopy toward the rows, representing low exposure to light or toward the inter-row spacing, representing high light exposure. Leaf gas exchange, chlorophyll fluorescence, and photosynthetic pigments levels were minimally or not at all affected by changing either the coffee cultivars or plant spacing. During the first evaluation, the leaf-to-fruitratio linearly increased, regardless of the cultivar. Light-exposed branches showed higher content of carotenoids and chlorophyll a in leaves and lower leaf-to-fruit-ratio as compared to those within the plant canopy. A major reduction in the number of fruits per branch was observed which was closely related to a parallel decrease in the number of fruits per node but not in the number of fruiting nodes per branch. Although this response was largely cultivar-dependent, it also changed according to the branch position in the hedgerow. Our results suggest that all tested cultivars exhibit high morphophysiological plasticity and have the potential to grow under different plant spacing within rows.

6 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
88% related
Germination
51.9K papers, 877.9K citations
87% related
Seedling
28.6K papers, 478.2K citations
85% related
Crop yield
27.3K papers, 396.5K citations
83% related
Hordeum vulgare
20.3K papers, 717.5K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235
202210
20218
202023
201944
201838