scispace - formally typeset
Search or ask a question
Topic

Plant morphology

About: Plant morphology is a research topic. Over the lifetime, 1174 publications have been published within this topic receiving 24418 citations. The topic is also known as: phytomorphology & morphology of higher plants.


Papers
More filters
Journal Article
TL;DR: The issues of development biology, agrotechnical and environmental requirements, flowering and pollination of this allogamous species were presented, as well as yielding, sensitivity to herbicides, effect of pathogenic factors upon generative organs, and chemical composition of runner bean seeds and pericarp.
Abstract: Runner bean (Phaseolus coccineus L.) is, after common bean (Phaseolus vulgaris L.), the second most important species, both around the world and in Poland. However, as compared to common bean, runner bean was not so well recognized, which is indicated by reports from literature. Among the most important values of this bean species are large and very large seeds (the weight of one thousand seeds: 900–3000 g), which, with respect to their nutritional value rival common bean seeds. There are forms of it that differ in plant growth type, morphological features of flowers, pods and seeds, as well as in the manner of use – green pods and for dry seeds. On the basis of world literature, results of the author’s own studies, as well as the studies conducted in Poland by her collaborators and other authors, the issues of development biology, agrotechnical and environmental requirements, flowering and pollination of this allogamous species were presented, as well as yielding, sensitivity to herbicides, effect of pathogenic factors upon generative organs, as well as chemical composition of runner bean seeds and pericarp (Phaseoli pericarpium).

9 citations

Journal ArticleDOI
01 Jan 2011
TL;DR: In this article, a light microscope and transmission electron microscope (TEM) were used to examine the anatomical and ultrastructural observations of vegetative and generative tissue in Cerastium arcticum, Colobanthus quitensis, Silene involucrata, plants from Caryophyllaceae and Deschampsia antarctica.
Abstract: Polar vascular plants native to the Arctic and the Antarctic geobotanical zone have been growing and reproducing effectively under diffi cult environmental conditions, colonizing frozen ground areas formerly covered by ice. Our macroscopic observations and microscopic studies conducted by means of a light microscope (LM) and transmission electron microscope (TEM) concerning the anatomical and ultrastructural observations of vegetative and generative tissue in Cerastium arcticum, Colobanthus quitensis, Silene involucrata, plants from Caryophyllaceae and Deschampsia antarctica, Poa annua and Poa arctica, from Poaceae family. In the studies, special attention was paid to plants coming from diversity habitats where stress factors operated with clearly different intensity. In all examinations plants, differences in anatomy were considerable. In Deschampsia antarctica the adaxial epidermis of hairgrass leaves from a humid microhabitat, bulliform cells differentiated. Mesophyll was composed of cells of irregular shapes and resembled aerenchyma. The ultrastructural observations of mesophyll in all plants showed tight adherence of chloroplasts, mitochondria and peroxisomes, surface deformations of these organelles and formation of characteristic outgrowths and pocket concavities fi lled with cytoplasm with vesicles and organelles by chloroplasts. In reproduction biology of examined Caryophyllaceae and Poaceae plants growing in natural conditions, in the Arctic and in the Antarctic, and in a greenhouse in Olsztyn showed that this plant develops two types

9 citations

Journal ArticleDOI
TL;DR: The results demonstrate that inoculation with ericoid mycorrhizal fungi enhanced flowering and altered investment in reproduction in genotype‐specific ways, and underscore the importance of examining belowground symbionts and genotypes‐specific responses in their hosts to fully understand the drivers of aboveground interactions.
Abstract: Premise Most plants interact with mycorrhizal fungi and animal pollinators simultaneously. Yet, whether mycorrhizae affect traits important to pollination remains poorly understood and may depend on the match between host and fungal genotypes. Here, we examined how ericoid mycorrhizal fungi affected flowering phenology, floral traits, and reproductive success, among eight genotypes of highbush blueberry, Vaccinium corymbosum (Ericaceae). We asked three overarching questions: (1) Do genotypes differ in response to inoculation? (2) How does inoculation affect floral and flowering traits? (3) Are inoculated plants more attractive to pollinators and less pollen limited than non-inoculated plants of the same genotype? Methods To examine these questions, we experimentally inoculated plants with ericoid mycorrhizal fungi, grew the plants in the field, and measured flowering and floral traits over 2 years. In year 2, we conducted a hand-pollination experiment to test whether plants differed in pollen limitation. Results Inoculated plants had significantly higher levels of colonization for some genotypes, and there were significant floral trait changes in inoculated plants for some genotypes as well. On average, inoculated plants produced significantly larger floral displays, more fruits per inflorescence, and heavier fruits with lower sugar content, than non-inoculated, control plants. Hand pollination enhanced the production of fruits, and fruit mass, for non-inoculated plants but not for those that were inoculated. Conclusions Our results demonstrate that inoculation with ericoid mycorrhizal fungi enhanced flowering and altered investment in reproduction in genotype-specific ways. These findings underscore the importance of examining belowground symbionts and genotype-specific responses in their hosts to fully understand the drivers of aboveground interactions.

9 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
88% related
Germination
51.9K papers, 877.9K citations
87% related
Seedling
28.6K papers, 478.2K citations
85% related
Crop yield
27.3K papers, 396.5K citations
83% related
Hordeum vulgare
20.3K papers, 717.5K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235
202210
20218
202023
201944
201838