scispace - formally typeset
Search or ask a question
Topic

Plant physiology

About: Plant physiology is a research topic. Over the lifetime, 1537 publications have been published within this topic receiving 72038 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Results indicate that UV-B affected photosynthesis and that the main protective system was the synthesis of MAAs and scytonemin-like compounds rather than antioxidant enzymes such as SOD.
Abstract: We report the effect of UV-B radiation (0.8 ± 0.1 mW cm−2) and UV-B radiation supplemented with low-intensity PAR (∼80 μmol photons m−2 s−1) on the photosynthesis, photosynthetic pigments, phosphoglycolipids, oxidative damage, enzymatic antioxidants, and UV-absorbing compounds in Phormidium tenue, a marine cyanobacterium. UV-B radiation resulted in a decline in photosynthesis and photosynthetic pigments leading to lower biomass. P. tenue synthesized UV-absorbing compounds like mycosporine-like amino acids (MAAs) and scytonemin in response to UV-B radiation. Quantity of MAAs and scytonemin was higher when UV-B was supplemented with low-level PAR. UV-B treatment also resulted in quantitative changes in phosphoglycolipids of the membrane. The UV-B treatment resulted in a slight increase in the level of peroxidation of cell membrane and very little increase in the activity of superoxide dismutase (SOD). Results indicate that UV-B affected photosynthesis and that the main protective system was the synthesis of MAAs and scytonemin-like compounds rather than antioxidant enzymes such as SOD.

26 citations

Journal ArticleDOI
TL;DR: Results indicate that the OsNDPK2 encoded by WSL12 plays an important role in chloroplast development and chlorophyll biosynthesis by regulating the expression levels of related genes.
Abstract: Chloroplast is a crucial organelle for plant photosynthesis and maintaining normal life activities in higher plants. Although some genes related to chloroplast development and pigment synthesis have been identified or cloned in rice, little is known about the relationship between these genes and abiotic stress response. In this study, we identified a novel mutant white stripe leaf 12 (wsl12) affecting pigment synthesis, chloroplast development and abiotic stress response in rice. The mutant phenotype was obvious at seeding and tillering stages and in response to the temperature change. Genetic analysis of reciprocal crosses between wsl12 and wild-type plants showed that wsl12 was a recessive mutant in a single nuclear locus. Map-based cloning revealed that the WSL12 locus encoded OsNDPK2, one of the three nucleoside diphosphate kinases (OsNDPKs). WSL12 expressed in all tested tissues, while it highly expressed in leaves and young tissues. The WSL12 protein localized to the chloroplast. The wsl12 mutant showed higher superoxide anion level and enhanced sensitivity to abscisic acid (ABA) and salinity. The transcription pattern of many genes involved in chlorophyll biosynthesis, ABA synthesis, light signaling pathway, reactive oxygen species-scavenging pathway and the other two OsNDPKs was altered in the wsl12 mutant. These results indicate that the OsNDPK2 encoded by WSL12 plays an important role in chloroplast development and chlorophyll biosynthesis by regulating the expression levels of related genes. In addition, WSL12 also affects the response to abiotic stress, such as ABA and salinity in rice, and is beneficial to molecular breeding of stress tolerance.

26 citations

Journal ArticleDOI
TL;DR: Investigation of the effects of gaseous nitrogen dioxide on stomatal conductance, photosynthesis, dark- and photorespiration of Populus alba × Populus berolinensis hybrid leaves using the photosynthesis system and scanning electron microscope technique showed that net photosynthetic rates were significantly reduced in leaves exposed to 4 µl 1−1 NO2 for 48 h.
Abstract: In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (NO2, 4 µl 1−1) on stomatal conductance, photosynthesis, dark- and photorespiration of Populus alba × Populus berolinensis hybrid leaves using the photosynthesis system and scanning electron microscope technique. The results showed that net photosynthetic rates were significantly reduced in leaves exposed to 4 µl 1−1 NO2 for 48 h as compared with leaves exposed to ambient carbon dioxide 380 µl 1−1 and ambient NO2 <0.1 µl 1−1 (the control) and the leaves exposed for 14 h. The decline of net photosynthetic rate was caused mainly by NO2 treatment. Dark respiration rates were dependent on co-action of the two factors (leaf temperature and NO2 treatment time). Post-illumination carbon dioxide burst in the exposed leaves occurred at 13–15 s after turning the light off, whereas this phenomenon was absent in the control leaves.

26 citations

Journal ArticleDOI
04 Mar 2021-PLOS ONE
TL;DR: In this paper, the effect of light quality on leaf area growth, biomass, pigments content, and net photosynthetic rate (Pn) across three Arabidopsis thaliana accessions was investigated, along with changes in transcription, photosynthates content and antioxidative enzyme activity.
Abstract: The impacts of wavelengths in 500-600 nm on plant response and their underlying mechanisms remain elusive and required further investigation. Here, we investigated the effect of light quality on leaf area growth, biomass, pigments content, and net photosynthetic rate (Pn) across three Arabidopsis thaliana accessions, along with changes in transcription, photosynthates content, and antioxidative enzyme activity. Eleven-leaves plants were treated with BL; 450 nm, AL; 595 nm, RL; 650 nm, and FL; 400-700 nm as control. RL significantly increased leaf area growth, biomass, and promoted Pn. BL increased leaf area growth, carotenoid and anthocyanin content. AL significantly reduced leaf area growth and biomass, while Pn remained unaffected. Petiole elongation was further observed across accessions under AL. To explore the underlying mechanisms under AL, expression of key marker genes involved in light-responsive photosynthetic reaction, enzymatic activity of antioxidants, and content of photosynthates were monitored in Col-0 under AL, RL (as contrast), and FL (as control). AL induced transcription of GSH2 and PSBA, while downregulated NPQ1 and FNR2. Photosynthates, including proteins and starches, showed lower content under AL. SOD and APX showed enhanced enzymatic activity under AL. These results provide insight into physiological and photosynthetic responses to light quality, in addition to identifying putative protective-mechanisms that may be induced to cope with lighting-stress in order to enhance plant stress tolerance.

26 citations

Book ChapterDOI
01 Jan 1980

26 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
91% related
Hordeum vulgare
20.3K papers, 717.5K citations
91% related
Photosynthesis
19.7K papers, 895.1K citations
89% related
Chlorophyll
18.2K papers, 587.4K citations
87% related
Arabidopsis thaliana
19.1K papers, 1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023218
2022445
202179
202069
201967
201869