scispace - formally typeset
Search or ask a question
Topic

Plant physiology

About: Plant physiology is a research topic. Over the lifetime, 1537 publications have been published within this topic receiving 72038 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In portions of the leaf where C4H:GUS expression was upregulated, photosynthesis was depressed, while non-photochemical quenching was increased, suggesting a trade-off between these two processes.
Abstract: Because they share common precursors and require significant amounts of energy, photosynthesis and defense against herbivores and pathogens may be inversely related. This relationship was examined in Arabidopsis thaliana exposed to herbivory by Trichoplusia ni neonates. The spatial pattern of photosynthesis was compared statistically with that of induction of the defense-related cinnamate-4-hydroxylase (C4H) gene across individual leaves exposed to herbivory in transgenic plants harboring a C4H:GUS gene fusion. In portions of the leaf where C4H:GUS expression was upregulated, photosynthesis was depressed, while non-photochemical quenching was increased, suggesting a trade-off between these two processes. However, photosynthetic damage spread further into surrounding areas than the induction of C4H:GUS expression. Photosynthetic depression was observed up to 1 mm from the edges of holes, whereas C4H:GUS induction typically was limited to about 0.5 mm or less from edges. Other mechanisms may be responsible for the spread of photosynthetic damage beyond where C4H-related defense was induced. Alternatively, C4H induction may reflect a subset of defensive responses more limited in their spatial distribution than the downregulation of photosynthesis. The suppression of photosynthesis in remaining leaf tissue represents a 'hidden cost' of herbivore damage.

15 citations

Journal ArticleDOI
TL;DR: The cold stress effect on early vigour and photosynthesis efficiency was evaluated for five industrial chicory varieties with contrasting early vigours and the relationship between the physiological processes was evaluated using principal component analysis.
Abstract: The cold stress effect on early vigour and photosynthesis efficiency was evaluated for five industrial chicory varieties with contrasting early vigour. The relationships between the growth and physiological parameters were assessed. The varieties were examined at three growth temperatures: 16 (reference), 8 (intermediate) and 4 °C (stress). The effect was measured using physiological processes (growth, photosynthesis, chlorophyll a fluorescence), and pigment content. The analysis of the measured growth parameters (dry leaf and root mass, and leaf area) indicated that temperature had a significant effect on the varieties, but the overall reaction of the varieties was similar with lowering temperatures. The photosynthesis and chlorophyll a fluorescence measurements revealed significant changes for the photosynthesis (maximum net photosynthesis, quantum efficiency, light compensation point and dark respiration) and chlorophyll a fluorescence parameters (photochemical and non-photochemical quenching) with lowering temperatures for Hera and Eva, two extremes in youth growth. No significant differences could be found between the extremes for the different temperatures. The pigment content analysis revealed significant differences at 4 °C in contrast to 16 and 8 °C, especially for the xanthophyll/carotenoid pool, suggesting a protective role. Subsequently, the relationship between the physiological processes was evaluated using principal component analysis. At 4 °C, 2 principal components were detected with high discriminating power for the varieties and similar classification of the varieties as determined in the growth analysis. This provides a preview on the possible relationships between photosynthesis and growth for industrial chicory at low temperatures.

15 citations

Journal ArticleDOI
TL;DR: The hypothesis that synthesis of 32-kD protein is important for recovery of photosynthesis after photoinhibition is supported, and photosynthesis and recovery were much affected.
Abstract: Recovery from photoinhibition of photosynthesis in intact Lemna gibba was studied in presence of the protein synthesis inhibitors chloramphenicol and cycloheximide. Exposure to an irradiance of 1000 μmol m(-2)s(-1) in N2 for 90 min induced 80% photoinhibition. The plants recovered photosynthesis when transfered to normal irradiances (210 μmol m(-2)s(-1)) and air. Chloramphenicol added to the medium was taken up by the plant and reduced photosynthesis slightly. Recovery from photoinhibition was more inhibited than photosynthesis. Cycloheximide was also taken up by the plants and reduced synthesis of light harvesting chlorophyll protein: however, neither photosynthesis nor recovery were much affected. Synthesis of 32-kD chloroplast protein during recovery was inhibited by chloramphenicol, but not by cycloheximide. Synthesis of 32-kD protein was enhanced by 20-210 μmol m(-2)s(-1) light. The results support the hypothesis that synthesis of 32-kD protein is important for recovery of photosynthesis after photoinhibition.

15 citations

Journal ArticleDOI
TL;DR: The proteins involved in pathways related to respiration, glycolysis and oxidative stress were not signifcantly changed in transgenic plants as compared to untransformed genotype, which indicate a lower metabolic perturbation under drought of the engineered genotype.
Abstract: Drought is one of major constraints that limits agricultural productivity. Some factors, including climate changes and acreage expansion, indicates towards the need for developing drought tolerant genotypes. In addition to its protective role against endoplasmic reticulum (ER) stress, we have previously shown that the molecular chaperone binding protein (BiP) is involved in the response to osmotic stress and promotes drought tolerance. Here, we analyzed the proteomic and metabolic profiles of BiP-overexpressing transgenic soybean plants and the corresponding untransformed line under drought conditions by 2DE-MS and GC/MS. The transgenic plant showed lower levels of the abscisic acid and jasmonic acid as compared to untransformed plants both in irrigated and non-irrigated conditions. In contrast, the level of salicylic acid was higher in transgenic lines than in untransformed line, which was consistent with the antagonistic responses mediated by these phytohormones. The transgenic plants displayed a higher abundance of photosynthesis-related proteins, which gave credence to the hypothesis that these transgenic plants could survive under drought conditions due to their genetic modification and altered physiology. The proteins involved in pathways related to respiration, glycolysis and oxidative stress were not signifcantly changed in transgenic plants as compared to untransformed genotype, which indicate a lower metabolic perturbation under drought of the engineered genotype. The transgenic plants may have adopted a mechanism of drought tolerance by accumulating osmotically active solutes in the cell. As evidenced by the metabolic profiles, the accumulation of nine primary amino acids by protein degradation maintained the cellular turgor in the transgenic genotype under drought conditions. Thus, this mechanism of protection may cause the physiological activities including photosynthesis to be active under drought conditions.

15 citations

Journal ArticleDOI
TL;DR: The role of a novel and uncharacterized Solanum melongena COP1 (SmCOP1) gene in tomato (Solanum lycopersicum) during fruit ripening plays a pivotal role in the inhibition of tomato Fruit ripening, reducing carotenoid contents and lowering ethylene production in fruits.

15 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
91% related
Hordeum vulgare
20.3K papers, 717.5K citations
91% related
Photosynthesis
19.7K papers, 895.1K citations
89% related
Chlorophyll
18.2K papers, 587.4K citations
87% related
Arabidopsis thaliana
19.1K papers, 1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023218
2022445
202179
202069
201967
201869