scispace - formally typeset
Search or ask a question
Topic

Plant physiology

About: Plant physiology is a research topic. Over the lifetime, 1537 publications have been published within this topic receiving 72038 citations.


Papers
More filters
Reference EntryDOI
19 Apr 2018

11 citations

Journal ArticleDOI
TL;DR: Calculation of diffusive resistance to H2O(r) and SO2(r′) showed that the ratio of r′/r was 1.9 irrespective of species and coincided well with the theoretical value based on molecular diffusion, making clear that the absorption of SO2 was dependent upon the gas exchange capacity of leaf blade.
Abstract: Photosynthetic rate, transpiration rate and SO2 absorption rate were simultaneously measured under exposure to SO2 (0.1–1.0 μl l −1) for 5 or 8 hr in six species belonging to C4 or C3 plants (Zea mays, Sorghum vulgare, Amaranthus tricolor, Oryza sativa, Avena sativa andHelianthus annuus). Distinct interspecific differences were found as to the extent of inhibition of photosynthetic rate. Calculation of diffusive resistance to H2O(r) and SO2(r′) showed that the ratio of r′/r was 1.9 irrespective of species and coincided well with the theoretical value based on molecular diffusion. Thus it was made clear that the absorption of SO2 was dependent upon the gas exchange capacity of leaf blade. Using the ratio of r′/r the rate of SO2 absorption could be calculated from transpiration rate and was compared with the inhibition rate of photosynthesis. In three C4 species, the inhibition of photosynthesis increased linearly with the amount of SO2 absorbed during a 5-hour period. The pattern of inhibition of photosynthesis inA. sativa andH. annuus among C3 species was similar to that of C4 species until the amount of SO2 absorbed reached 60 mg-SO2 m−2 above which the inhibition abruptly increased. The inhibition of photosynthesis inO. sativa was exceptionally severe even with only a small amount of SO2 absorbed.

11 citations

Journal ArticleDOI
TL;DR: Both photosynthetic rates per unit leaf area and shoot-root ratios were affected, however, the carbon/nitrogen economies of the plants and the fraction of the total plant weight allocated to nodule growth were unaffected.
Abstract: The possibilities of using light quality treatments to gain an understanding of the mechanisms controlling the allocation of photosynthate for symbiotic nitrogen fixation were studied. White clover (Trifolium repens) plants were grown at the same photon irradiance in red, blue and green light treatments. Growth, nodulation and the carbon/nitrogen economies of the plants were measured. Both photosynthetic rates per unit leaf area and shoot-root ratios were affected by the treatments. However, the carbon/nitrogen economies of the plants and the fraction of the total plant weight allocated to nodule growth were unaffected.

11 citations

Journal ArticleDOI
TL;DR: Results show that the two strains s37 and s50 could be considered for growth promotion programs of A. nordmanniana in greenhouse nurseries, and even under field conditions, and indicate that this strain improves plant growth and vigor through effects on photosynthesis and plant carbohydrate reservoirs.
Abstract: Abies nordmanniana is used for Christmas tree production but poor seed germination and slow growth represent challenges for the growers. We addressed the plant growth promoting potential of root-associated bacteria isolated from A. nordmanniana. Laboratory screenings of a bacterial strain collection yielded several Bacillus and Paenibacillus strains that improved seed germination and produced indole-3-acetic acid. The impact of three of these strains on seed germination, plant growth and growth-related physiological parameters was then determined in greenhouse and field trials after seed inoculation, and their persistence was assessed by 16S rRNA gene-targeted bacterial community analysis. Two strains showed distinct and significant effects. Bacillus sp. s50 enhanced seed germination in the greenhouse but did not promote shoot or root growth. In accordance, this strain did not increase the level of soluble hexoses needed for plant growth but increased the level of storage carbohydrates. Moreover, strain s50 increased glutathione reductase and glutathione-S-transferase activities in the plant, which may indicate induction of systemic resistance during the early phase of plant development, as the strain showed poor persistence in the root samples (rhizosphere soil plus root tissue). Paenibacillus sp. s37 increased plant root growth, especially by inducing secondary root formation, under in greenhouse conditions, where it showed high persistence in the root samples. Under these conditions, it further it increased the level of soluble carbohydrates in shoots, and the levels of starch and non-structural carbohydrates in roots, stem and shoots. Moreover, it increased the chlorophyll level in the field trial. These findings indicate that this strain improves plant growth and vigor through effects on photosynthesis and plant carbohydrate reservoirs. The current results show that the two strains s37 and s50 could be considered for growth promotion programs of A. nordmanniana in greenhouse nurseries, and even under field conditions.

11 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
91% related
Hordeum vulgare
20.3K papers, 717.5K citations
91% related
Photosynthesis
19.7K papers, 895.1K citations
89% related
Chlorophyll
18.2K papers, 587.4K citations
87% related
Arabidopsis thaliana
19.1K papers, 1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023218
2022445
202179
202069
201967
201869