scispace - formally typeset
Search or ask a question
Topic

Plant physiology

About: Plant physiology is a research topic. Over the lifetime, 1537 publications have been published within this topic receiving 72038 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Different living organisms such as bacteria, yeast, and mammals have been investigated for the sensing mechanisms of the carbohydrate status of their cells, and this information is used together with some recent data obtained for plants to propose how hexose levels might be sensed in higher plant cells.
Abstract: Although down-regulation of photosynthesis in higher C3 plants exposed to long-term elevated CO2 has been recognized in plants with low sink activity or poor nutrient status, the underlying molecular mechanisms remain unclear. This review covers aspects of rising CO2 on plant productivity in general, and then focuses on photosynthesis, biochemistry (stroma and thylakoid proteins, Rubisco activities and metabolites), and gene expression in tomato plants grown under ambient or elevated CO2. Taking into account these data and the recent discovery that glucose triggers repression of photosynthetic gene transcription, a molecular mechanism is proposed for feedback regulation of photosynthesis under high CO2. Different living organisms such as bacteria, yeast, and mammals have been investigated for the sensing mechanisms of the carbohydrate status of their cells, and this information is used together with some recent data obtained for plants to propose how hexose levels might be sensed in higher plant cells.

101 citations

Journal ArticleDOI
TL;DR: In this paper, the arsenic uptake and accumulation, the changes in gas exchange and in chlorophyll a fluorescence parameters as well as the chloroplastic pigments content were measured.
Abstract: Arsenate (AsV) and arsenite (AsIII) contamination can promote several disturbances in plant metabolism, besides affecting directly human and animal health due to the insertion of this metalloid in the food chain. Therefore, the arsenic (As) uptake and accumulation, the changes in gas exchange and in chlorophyll a fluorescence parameters as well as the chloroplastic pigments content were measured. The As accumulation in leaves and roots increased with the increase of AsV and AsIII concentration, except at the highest AsIII concentration, probably because of AsIII extrusion mechanism. Although the highest As concentration has been found in roots, significant amount was transported to the leaves, especially when plants were exposed to AsIII. The As accumulation decreased the relative growth rate (RGR) of leaves and roots. However, at 6.6 μmol L−1 AsV, an increase in leaves RGR was observed, possibly related to the changes in phosphate (PV) nutrition caused by As. AsV and AsIII interfered negatively in the photosynthetic process, except at 6.6 μmol L−1 AsV. The observed reduction seemed to be associated to the interference in the photochemical and biochemical steps of photosynthesis; however, chlorophyll a fluorescence results indicate that the photosynthetic apparatus and chloroplastic pigments were not damaged. So, lettuce plants demonstrated to be able to accumulate As and also to protect the photosynthetic apparatus against the harmful effects of this metalloid, probably through the activation of tolerance mechanisms.

101 citations

Journal ArticleDOI
TL;DR: The biosynthesis of anthocyanins in plant tissues either requires light or is enhanced by it, and the response to prolonged ultraviolet and blue radiation is probably mediated, at least in some systems, by two photoreceptors: phytochrome and cryptochrome.
Abstract: The biosynthesis of anthocyanins in plant tissues either requires light or is enhanced by it. Light-dependent anthocyanin synthesis has been extensively used as a model system for studies of the mechanism of photoregulation of plant development. Two components can be distinguished in the action of light on anthocyanin production. The first component is the red-far red reversible, phytochrome-mediated response induced by short irradiations; the amount of anthocyanin formed in response to a single, short irradiation is small. The second component is the response to prolonged exposures; the formation of large amounts of anthocyanin requires prolonged exposures to high fluence rates of visible and near-visible radiation (290 to 750 nm) and shows the typical properties of the “High Irradiance Reaction” (HIR) of plant photomorphogenesis. Phytochrome is involved in the photoregulation of the HIR response and is the only photoreceptor mediating the action of prolonged red and far red irradiations. The response to prolonged ultraviolet and blue radiation is probably mediated, at least in some systems, by two photoreceptors: phytochrome and cryptochrome, the latter being a specific ultraviolet-blue-light photoreceptor. The nature of the interaction between phytochrome and cryptochrome in the regulation of plant photomorphogenic responses is still unclear.

101 citations

01 Jan 2016
TL;DR: The experiments in plant physiology is universally compatible with any devices to read, and will help you to get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for reading experiments in plant physiology. As you may know, people have search hundreds times for their favorite readings like this experiments in plant physiology, but end up in malicious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful bugs inside their desktop computer. experiments in plant physiology is available in our book collection an online access to it is set as public so you can get it instantly. Our books collection hosts in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the experiments in plant physiology is universally compatible with any devices to read.

99 citations

Journal ArticleDOI
TL;DR: The results indicate previously unknown roles of GaMYB85, showing that it confers good drought, salt, and freezing tolerance, most probably via an ABA-induced pathway and can potentially be exploited to develop improved abiotic stress tolerance in cotton plants.
Abstract: MYB transcription factors (TFs) are one of the largest families of TFs in higher plants and are involved in diverse biological, functional, and structural processes. Previously, very few functional validation studies on R2R3 MYB have been conducted in cotton in response to abiotic stresses. In the current study, GaMYB85, a cotton R2R3 MYB TF, was ectopically expressed in Arabidopsis thaliana (Col-0) and was functionally characterized by overexpression in transgenic plants. The in-silico analysis of GaMYB85 shows the presence of a SANT domain with a conserved R2R3 MYB imperfect repeat. The GaMYB85 protein has a 257-amino acid sequence, a molecular weight of 24.91 kD, and an isoelectric point of 5.58. Arabidopsis plants overexpressing GaMYB85 exhibited a higher seed germination rate in response to mannitol and salt stress, and higher drought avoidance efficiency than wild-type plants upon water deprivation. These plants had notably higher levels of free proline and chlorophyll with subsequent lower water loss rates and higher relative water content. Germination of GaMYB85 transgenics was more sensitive to abscisic acid (ABA) and extremely liable to ABA-induced inhibition of primary root elongation. Moreover, when subjected to treatment with different concentrations of ABA, transgenic plants with ectopically expressed GaMYB85 showed reduced stomatal density, with greater stomatal size and lower stomatal opening rates than those in wild-type plants. Ectopic expression of GaMYB85 led to enhanced transcript levels of stress-related marker genes such as RD22, ADH1, RD29A, P5CS, and ABI5. Our results indicate previously unknown roles of GaMYB85, showing that it confers good drought, salt, and freezing tolerance, most probably via an ABA-induced pathway. These findings can potentially be exploited to develop improved abiotic stress tolerance in cotton plants.

99 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
91% related
Hordeum vulgare
20.3K papers, 717.5K citations
91% related
Photosynthesis
19.7K papers, 895.1K citations
89% related
Chlorophyll
18.2K papers, 587.4K citations
87% related
Arabidopsis thaliana
19.1K papers, 1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023218
2022445
202179
202069
201967
201869