scispace - formally typeset
Search or ask a question
Topic

Plant physiology

About: Plant physiology is a research topic. Over the lifetime, 1537 publications have been published within this topic receiving 72038 citations.


Papers
More filters
Book ChapterDOI
TL;DR: The hypothesis that tomato plants with limited supply of mineral nutrients or phosphorus are more susceptible to chilling is supported and a much more drastic inhibition of photosynthesis was observed in nutrient-starved or P-insufficient tomato plants than in plants from FNS.
Abstract: The experiments were conducted on two tomato cultivars: Garbo and Robin. Mineral starvation due to plant growth in 20-fold diluted nutrient solution (DNS) combined with chilling reduced the rate of photosynthesis (P N) and stomatal conductance (g) to a greater extent than in plants grown in full nutrient solution (FNS). In phosphate-starved tomato plants the P N rate and stomatal conductance decreased more after chilling than in plants grown on FNS. In low-P plants even 2 days after chilling the recovery of CO2 assimilation rate and stomatal conductance was low. A resupply of phosphorus to low-P plants (low P + P) did not improve the rate of photosynthesis in non-chilled plants (NCh) but prevented P N inhibition in chilled (Ch) plants. The greatest effect of P resupply was expressed as a better recovery of photosynthesis and stomatal conductance, especially in non-chilled low P + P plants. The F v/F m (ratio of variable to maximal chlorophyll fluorescence) decreased more during P starvation than as an effect of chilling. Supplying phosphorus to low-P plants caused the slight increase in the F v/F mratio. In conclusion, after a short-term chilling in darkness a much more drastic inhibition of photosynthesis was observed in nutrient-starved or P-insufficient tomato plants than in plants from FNS. This inhibition was caused by the decrease in both photochemical efficiency of photosystems and the reduction of stomatal conductance. The presented results support the hypothesis that tomato plants with limited supply of mineral nutrients or phosphorus are more susceptible to chilling.

47 citations

Journal ArticleDOI
10 Feb 2021-Biology
TL;DR: In this article, the effects of anthocyanins on plant physiology and morphogenesis, and their implications on drought stress tolerance, were investigated in transgenic tobacco plants (AN1), which over-accumulated Anthocyanin in all tissues, which conferred them with a higher drought tolerance compared to the wild-type plants.
Abstract: Abiotic stresses will be one of the major challenges for worldwide food supply in the near future. Therefore, it is important to understand the physiological mechanisms that mediate plant responses to abiotic stresses. When subjected to UV, salinity or drought stress, plants accumulate specialized metabolites that are often correlated with their ability to cope with the stress. Among them, anthocyanins are the most studied intermediates of the phenylpropanoid pathway. However, their role in plant response to abiotic stresses is still under discussion. To better understand the effects of anthocyanins on plant physiology and morphogenesis, and their implications on drought stress tolerance, we used transgenic tobacco plants (AN1), which over-accumulated anthocyanins in all tissues. AN1 plants showed an altered phenotype in terms of leaf gas exchanges, leaf morphology, anatomy and metabolic profile, which conferred them with a higher drought tolerance compared to the wild-type plants. These results provide important insights for understanding the functional reason for anthocyanin accumulation in plants under stress.

47 citations

Journal ArticleDOI
TL;DR: A rapid method is described to obtain Percoll-purified and photosynthetically active chloroplasts from Arabidopsis leaves retaining almost 90% of the Vmax of photosynthesis measured in the starting leaves from plants grown under a light intensity of 150mumolphotonm(-2)s(-1)s and 80% of their initial photosynthetic rate after 3h of storage.

47 citations

Journal ArticleDOI
TL;DR: It is found that plant sulphur nutritional status plays a key role in the metabolic modifications necessary to cope with salt stress.
Abstract: As the salt-affected areas are expected to increase substantially in subsequent years, the impact of salinity on plant growth and yield is likely to increase. One of the first consequences of plant exposure to high saline concentrations is the formation of reactive oxygen species (ROS). In order to allow adjustment of the cellular redox state, plant antioxidative system has to be activated. This system involves several enzymes and compounds, as the sulphur-containing metabolite glutathione (GSH). Therefore, our aim was to determine whether adequate sulphur nutrition might alleviate the adverse effects of salt stress on barley plants grown in the presence of different sulphate application rate and exposed to 100 mM NaCl, by studying differences in growth parameters, lipid peroxidation, sulphate and thiol accumulation and sulphur assimilation pathway. In salt-treated plants, an adequate sulphur supply allows adequate GSH synthesis (high-thiol concentration) thus avoiding the effects of ROS on photosynthetic functions (no effect on both chlorophyll and protein content), whereas in S-deficient plants, salt stress leads to excess ROS production that induces stress and plants showed reduction of photosynthetic efficiency (loss of chlorophyll and protein contents). As thiol levels are more abundant in S-sufficient plants than in those S-deficient, one might expect that S-sufficient plants are more able to remove the harmful effects of high salinity. The comparison of malondialdehyde levels between +S and −S salt-treated plants strongly supports this idea. In conclusion, we found that plant sulphur nutritional status plays a key role in the metabolic modifications necessary to cope with salt stress.

47 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
91% related
Hordeum vulgare
20.3K papers, 717.5K citations
91% related
Photosynthesis
19.7K papers, 895.1K citations
89% related
Chlorophyll
18.2K papers, 587.4K citations
87% related
Arabidopsis thaliana
19.1K papers, 1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023218
2022445
202179
202069
201967
201869