scispace - formally typeset
Search or ask a question
Topic

Plant physiology

About: Plant physiology is a research topic. Over the lifetime, 1537 publications have been published within this topic receiving 72038 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This review summarizes the impact of the green light on the life of plants, and green light receptors and the mechanisms of its action are discussed.
Abstract: Green light, along with other portions of the visible region of electromagnetic radiation, brings plants environmental information. Green light is a factor regulating the morphology of cells, tissues, and organs; photosynthesis; respiration and growth; and duration of stages of plant ontogenesis. This review summarizes the impact of the green light on the life of plants, and green light receptors and the mechanisms of its action are discussed.

39 citations

Journal ArticleDOI
TL;DR: Investigations of the leaves showed that most of the chlorophyll is found in the palisade parenchyma, thechlorophyll a/b ratio is the highest in the upper layer, and they are evidence of very great differentiation of light conditions within it.
Abstract: The concentration of chlorophyll and a carotenoids in the bark of stems of different age and in the leaves of lilac (Syringa vulgaris L.) was determined.

38 citations

Journal ArticleDOI
TL;DR: It is suggested that removal of early fruiting branches delays main-stem leaf senescence, which can be attributed to increased cytokinin and/or reduced ABA.
Abstract: Numerous studies have shown that early-fruit removal enhances vegetative growth and development of cotton (Gossypium hirsutum L.). However, few studies have examined changes in leaf senescence and endogenous hormones due to fruit removal. The objective of this study was to determine the correlation between some endogenous phytohormones, particularly the cytokinins and abscisic acid (ABA), and leaf senescence following fruit removal. Cotton was grown in pots and in the field during 2005 and 2006. Two early-fruiting branches were excised from plants at squaring to form the fruit removal treatment while the non-excised plants served as control. Plant biomass, seed cotton yield, cytokinins and ABA levels in main-stem leaves and xylem sap as well as main-stem leaf photosynthetic rate (Pn) and chlorophyll (Chl) concentration were determined after removal or at harvest. Fruit removals increased the leaf area, root and shoot dry weight and plant biomass at 35 days after removal (DAR), whether in potted or field-grown cotton; under field conditions, it also improved plant biomass and seed cotton yield at harvest. The Pn and Chl concentration in excised plants were significantly higher than in control plants from 5 to 35 DAR, suggesting that fruit removal considerably delayed leaf senescence. Fruit-excised plants contained more trans-zeatin and its riboside (t-Z + t-ZR), dihydrozeatin and its riboside (DHZ + DHZR), and isopentenyladenine and its riboside (iP + iPA) but less ABA in both main-stem leaves and xylem sap than control plants from 5 to 35 DAR. These results suggest that removal of early fruiting branches delays main-stem leaf senescence, which can be attributed to increased cytokinin and/or reduced ABA. Cytokinin and ABA are involved in leaf senescence following early fruit removal.

38 citations

Journal ArticleDOI
TL;DR: Carbon assimilation and oxygen evolution in response to light intensity and ambient CO2 concentration was measured and is presented here to demonstrate the potential use of this method for investigation of photosynthesis of Arabidopsis plants in controlled environment conditions.
Abstract: Measurement of photosynthesis of intact leaves of Arabidopsis thaliana has been prohibitive due to the small leaf size and prostrate growth habit. Because of the widespread use of Arabidopsis for plant science research it is important to have a procedure for accurate, nondestructive measurement of its photosynthesis. We developed and tested a method for analysis of photosynthesis in whole plants of Arabidopsis. Net carbon assimilation and stomatal conductance were measured with an open gas exchange system and photosynthetic oxygen evolution was determined from chlorophyll fluorescence parameters. Individual plants were grown in 50 cubic centimeter tubes that were attached with an air tight seal to an enclosed gas exchange chamber for measurement of carbon dioxide and water exchange by the whole plant. Chlorophyll fluorescence from intact leaves was simultaneously measured with a pulse modulated fluorometer. Photosynthetic CO2 assimilation and stomatal conductance rates were calculated with established gas exchange procedures and O2 evolution was determined from chlorophyll fluorescence measurement of Photosystem II yield. Carbon assimilation and oxygen evolution in response to light intensity and ambient CO2 concentration was measured and is presented here to demonstrate the potential use of this method for investigation of photosynthesis of Arabidopsis plants in controlled environment conditions.

38 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
91% related
Hordeum vulgare
20.3K papers, 717.5K citations
91% related
Photosynthesis
19.7K papers, 895.1K citations
89% related
Chlorophyll
18.2K papers, 587.4K citations
87% related
Arabidopsis thaliana
19.1K papers, 1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023218
2022445
202179
202069
201967
201869