scispace - formally typeset
Search or ask a question
Topic

Plant physiology

About: Plant physiology is a research topic. Over the lifetime, 1537 publications have been published within this topic receiving 72038 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that expression of C4 photosynthesis enzyme(s) in a C3 plant can improve its photosynthetic capacity with enhanced tolerance to salinity stress.
Abstract: Plants with C4 photosynthesis are efficient in carbon assimilation and have an advantage over C3 photosynthesis. In C4 photosynthesis, the primary CO2 fixation is catalyzed by phosphoenolpyruvate carboxylase (PEPC). Here, we show that overexpression of Zea mays PEPC cDNA, under the control of 35S promoter, in Arabidopsis thaliana resulted in ~7–10 fold higher protein abundance and ~7–10 fold increase in PEPC activity in the transgenic lines than that in the vector control. We suggest that overexpression of PEPC played an anaplerotic role to increase the supply of 4-carbon carboxylic acids, which provided carbon skeletons for increased amino acid and protein synthesis. Higher protein content must have been responsible for increased metabolic processes including chlorophyll biosynthesis, photosynthesis, and respiration. Consequently, the PEPC-overexpressed transgenic plants had higher chlorophyll content, enhanced electron transport rate (ETR), lower non-photochemical quenching (NPQ) of chlorophyll a fluorescence, and a higher performance index (PI) than the vector control. Consistent with these observations, the rate of CO2 assimilation, the starch content, and the dry weight of PEPC-overexpressed plants increased by 14–18 %, 10–18 %, and 6.5–16 %, respectively. Significantly, transgenics were tolerant to salt stress as they had increased ability to synthesize amino acids, including the osmolyte proline. NaCl (150 mM)-treated transgenic plants had higher variable to maximum Chl a fluorescence (F v/F m) ratio, higher PI, higher ETR, and lower NPQ than the salt-treated vector controls. These results suggest that expression of C4 photosynthesis enzyme(s) in a C3 plant can improve its photosynthetic capacity with enhanced tolerance to salinity stress.

37 citations

Journal ArticleDOI
03 Feb 2014-PLOS ONE
TL;DR: NtAQP1 significantly increased leaf mesophyll CO2 conductance and enhanced the rate of photosynthesis, suggesting that NtA QP1 facilitated the growth of the double-transgenic plants by enhancing mesophyLL conductance of CO2.
Abstract: Increased expression of the aquaporin NtAQP1, which is known to function as a plasmalemma channel for CO₂ and water, increases the rate of both photosynthesis and transpiration. In contrast, increased expression of Arabidopsis hexokinase1 (AtHXK1), a dual-function enzyme that mediates sugar sensing, decreases the expression of photosynthetic genes and the rate of transpiration and inhibits growth. Here, we show that AtHXK1 also decreases root and stem hydraulic conductivity and leaf mesophyll CO₂ conductance (g(m)). Due to their opposite effects on plant development and physiology, we examined the relationship between NtAQP1 and AtHXK1 at the whole-plant level using transgenic tomato plants expressing both genes simultaneously. NtAQP1 significantly improved growth and increased the transpiration rates of AtHXK1-expressing plants. Reciprocal grafting experiments indicated that this complementation occurs when both genes are expressed simultaneously in the shoot. Yet, NtAQP1 had only a marginal effect on the hydraulic conductivity of the double-transgenic plants, suggesting that the complementary effect of NtAQP1 is unrelated to shoot water transport. Rather, NtAQP1 significantly increased leaf mesophyll CO₂ conductance and enhanced the rate of photosynthesis, suggesting that NtAQP1 facilitated the growth of the double-transgenic plants by enhancing mesophyll conductance of CO₂.

37 citations

Journal ArticleDOI
TL;DR: Overall, results suggest a rearrangement of carbon metabolism in the leaves, which could reflect a short-term mechanism of survival of Arabidopsis seedlings subjected to severe oxidative stress conditions.
Abstract: Studies of oxidative stress in plants began several years ago, although many aspects of the antioxidant response are still unknown. In this work, we analyze the transcription profile of Arabidopsis thaliana leaves under oxidative and control conditions. Plants were challenged with methyl viologen (MV), a redox cycling herbicide that produces superoxide anion (O 2 •− ) in the light and in the chloroplasts, generating inhibition of photosynthesis. Gas exchange measurements and starch and soluble sugars were assayed to test the status of primary metabolism of Arabidopsis leaves. Within the first 2 h of 50 μM MV treatment, several genes were differentially expressed, among them were proteins implicated in photosynthesis, respiration, and carbon metabolism. Soluble sugars and starch markedly dropped after 3 h MV treatment, while respiration rate showed a steady increase after 4 h oxidative treatment. It was observed that the anabolic pathways were repressed while catabolic pathways were induced after the oxidative treatment. Overall, results suggest a rearrangement of carbon metabolism in the leaves, which could reflect a short-term mechanism of survival of Arabidopsis seedlings subjected to severe oxidative stress conditions.

37 citations

Journal ArticleDOI
TL;DR: Promotion of chlorophyll accumulation and biomass may be due to increased ability to assimilate nutrients as plants treated with L-lactoyllactic acid showed no decrease in biomass when grown in medium that was growth limiting for control plants.
Abstract: Polymers of L-lactic acid are shown to promote plant growth. Dry weight of duckweed (Lemna minor L.) and corn (Zea mays L) was more than doubled when plants were grown in media containing the dimer of L-lactic acid, L-lactoyllactic acid. Higher polymers were equally effective at increasing plant biomass. Monomeric lactic acid and polymers of D-lactic acid showed no biological activity. Increased plant biomass was accompanied by increased chlorophyll accumulation and root growth. Promotion of chlorophyll accumulation and biomass may be due to increased ability to assimilate nutrients as plants treated with L-lactoyllactic acid showed no decrease in biomass when grown in medium that was growth limiting for control plants.

37 citations

Journal ArticleDOI
TL;DR: It is reported that overexpression of OsARD1 elevates the endogenous ethylene release rate, enhances the tolerance to submergence stress, and reduces the sensitivity to drought, salt, and osmotic stresses in rice.
Abstract: Acireductone dioxygenase (ARD) is a metal-binding metalloenzyme and involved in the methionine salvage pathway. In rice, OsARD1 binds Fe2+ and catalyzes the formation of 2-keto-4-methylthiobutyrate (KMTB) to produce methionine, which is an initial substrate in ethylene synthesis pathway. Here, we report that overexpression of OsARD1 elevates the endogenous ethylene release rate, enhances the tolerance to submergence stress, and reduces the sensitivity to drought, salt, and osmotic stresses in rice. OsARD1 is strongly induced by submergence, drought, salinity, PEG6000, and mechanical damage stresses and exhibits high expression level in senescent leaves. Transgenic plants overexpressing OsARD1 (OsARD1-OE) display fast elongation growth to escape submergence stress. The ethylene content is significantly maximized in OsARD1-OE plants compared with the wide type. OsARD1-OE plants display increased shoot elongation and inhibition of root elongation under the submergence stress and grow in dark due to increase of ethylene. The elongation of coleoptile under anaerobic germination is also significantly promoted in OsARD1-OE lines due to the increase of ethylene content. The sensitivity to drought and salt stresses is reduced in OsARD1-OE transgenic lines. Water holding capacity is enhanced, and the stomata and trichomes on leaves increase in OsARD1-OE lines. Drought and salt tolerance and ethylene synthesis-related genes are upregulated in OsARD1-OE plants. Subcellular localization shows that OsARD1 displays strong localization signal in cell nucleus, suggesting OsARD1 may interact with the transcription factors. Taken together, the results provide the understanding of the function of OsARD1 in ethylene synthesis and abiotic stress response in rice.

36 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
91% related
Hordeum vulgare
20.3K papers, 717.5K citations
91% related
Photosynthesis
19.7K papers, 895.1K citations
89% related
Chlorophyll
18.2K papers, 587.4K citations
87% related
Arabidopsis thaliana
19.1K papers, 1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023218
2022445
202179
202069
201967
201869