scispace - formally typeset
Search or ask a question
Topic

Plasma membrane fusion

About: Plasma membrane fusion is a research topic. Over the lifetime, 144 publications have been published within this topic receiving 6883 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: EK1C4 was the most potent fusion inhibitor against SARS-CoV-2 S protein-mediated membrane fusion and pseudovirus infection with IC50s of 1.3 and 15.8 nM, about 241- and 149-fold more potent than the original EK1 peptide, respectively.
Abstract: The recent outbreak of coronavirus disease (COVID-19) caused by SARS-CoV-2 infection in Wuhan, China has posed a serious threat to global public health. To develop specific anti-coronavirus therapeutics and prophylactics, the molecular mechanism that underlies viral infection must first be defined. Therefore, we herein established a SARS-CoV-2 spike (S) protein-mediated cell–cell fusion assay and found that SARS-CoV-2 showed a superior plasma membrane fusion capacity compared to that of SARS-CoV. We solved the X-ray crystal structure of six-helical bundle (6-HB) core of the HR1 and HR2 domains in the SARS-CoV-2 S protein S2 subunit, revealing that several mutated amino acid residues in the HR1 domain may be associated with enhanced interactions with the HR2 domain. We previously developed a pan-coronavirus fusion inhibitor, EK1, which targeted the HR1 domain and could inhibit infection by divergent human coronaviruses tested, including SARS-CoV and MERS-CoV. Here we generated a series of lipopeptides derived from EK1 and found that EK1C4 was the most potent fusion inhibitor against SARS-CoV-2 S protein-mediated membrane fusion and pseudovirus infection with IC50s of 1.3 and 15.8 nM, about 241- and 149-fold more potent than the original EK1 peptide, respectively. EK1C4 was also highly effective against membrane fusion and infection of other human coronavirus pseudoviruses tested, including SARS-CoV and MERS-CoV, as well as SARSr-CoVs, and potently inhibited the replication of 5 live human coronaviruses examined, including SARS-CoV-2. Intranasal application of EK1C4 before or after challenge with HCoV-OC43 protected mice from infection, suggesting that EK1C4 could be used for prevention and treatment of infection by the currently circulating SARS-CoV-2 and other emerging SARSr-CoVs.

1,026 citations

Journal ArticleDOI
TL;DR: Sperm-egg plasma membrane fusion during fertilization was studied using guinea pig gametes and mAbs to sperm surface antigens and revealed that PH-30 mAb binding was restricted to the sperm posterior head surface and was absent from the equatorial region.
Abstract: Sperm-egg plasma membrane fusion during fertilization was studied using guinea pig gametes and mAbs to sperm surface antigens. The mAb, PH-30, strongly inhibited sperm-egg fusion in a concentration-dependent fashion. When zona-free eggs were inseminated with acrosome-reacted sperm preincubated in saturating (140 micrograms/ml) PH-30 mAb, the percent of eggs showing fusion was reduced 75%. The average number of sperm fused per egg was also reduced by 75%. In contrast a control mAb, PH-1, preincubated with sperm at 400 micrograms/ml, caused no inhibition. The PH-30 and PH-1 mAbs apparently recognize the same antigen but bind to two different determinants. Both mAbs immunoprecipitated the same two 125I-labeled polypeptides with Mr 60,000 (60 kD) and Mr 44,000 (44 kD). Boiling a detergent extract of sperm severely reduced the binding of PH-30 but had essentially no effect on the binding of PH-1, indicating that the two mAbs recognize different epitopes. Immunoelectron microscopy revealed that PH-30 mAb binding was restricted to the sperm posterior head surface and was absent from the equatorial region. The PH-30 and PH-1 mAbs did not bind to sperm from the testis, the caput, or the corpus epididymis. PH-30 mAb binding was first detectable on sperm from the proximal cauda epididymis, i.e., sperm at the developmental stage where fertilization competence appears. After purification by mAb affinity chromatography, the PH-30 protein retained antigenic activity, binding both the PH-30 and PH-1 mAbs. The purified protein showed two polypeptide bands of 60 and 44 kD on reducing SDS PAGE. The two polypeptides migrated further (to approximately 49 kD and approximately 33 kD) on nonreducing SDS PAGE, showing that they do not contain interchain disulfide bonds, but probably have intrachain disulfides. 44 kD appears not to be a proteolytic fragment of 60 kD because V8 protease digestion patterns did not reveal related peptide patterns from the 44- and 60-kD bands. In the absence of detergent, the purified protein precipitates, suggesting that either 60 or 44 kD could be an integral membrane polypeptide.

373 citations

Journal ArticleDOI
TL;DR: In this paper, the transfection efficiency of plasmid DNA encoding either luciferase or β-galactosidase encapsulated in pH-sensitive liposomes or non-pH-sensitive Liposomes was compared in various mammalian cell lines.
Abstract: We compare the transfection efficiency of plasmid DNA encoding either luciferase or (β-galactosidase encapsulated in pH-sensitive liposomes or non-pH-sensitive liposomes or DNA complexed with cationic liposomes composed of dioleoyloxypropyl-trimethylammonium:dioleoylphosphatidyl-ethanolamine (1:1, w/w) (Lipofectin) and delivered into various mammalian cell lines. Cationic liposomes mediate the highest transient transfection level in all cell-lines examined. pH-sensitive liposomes, composed of cholestryl hemisuccinate and dioleoylphosphatidylethanolamine at a 2:1 molar ratio, mediate gene transfer with efficiencies that are 1 to 30% of that obtained with cationic liposomes, while non-pH-sensitive liposome compositions do not induce any detectable transfection. Cationic liposomes mediate a more rapid uptake of plasmid DNA, to about an eightfold greater level than that obtained with pH-sensitive liposomes. The higher uptake of DNA mediated by Lipofectin accounts for part of its high transfection efficiency. Treatment of cells with chloroquine, ammonium chloride, or monensin decreases (threefold) transfection using pH-sensitive liposomes and either has no effect on or enhances cationic liposome-mediated transfection. Therefore plasma membrane fusion is not the only mechanism available to cationic liposomes; in certain cell lines DNA delivery via endocytosis is a possible parallel pathway and could augment the superior transfection efficiency observed with cationic liposomes.

371 citations

Journal ArticleDOI
TL;DR: The predicted sequence of the F US1 protein (deduced from the FUS1 DNA sequence) and subcellular fractionation studies with Fus1-beta-galactosidase hybrid proteins suggest that Fus 1 is a membrane or secreted protein, which may be located at a position within the cell where it is poised to catalyze cell wall or plasma membrane fusion.
Abstract: We have devised a screen for genes from the yeast Saccharomyces cerevisiae whose expression is affected by cell type or by the mating pheromones. From this screen we identified a gene, FUS1, whose pattern of expression revealed interesting regulatory strategies and whose product was required for efficient cell fusion during mating. Transcription of FUS1 occurred only in a and alpha cells, not in a/alpha cells, where it was repressed by a1 X alpha 2, a regulatory activity present uniquely in a/alpha cells. Transcription of FUS1 showed an absolute requirement for the products of five STE genes, STE4, STE5, STE7, STE11, and STE12. Since the activators STE4, STE5, and STE12 are themselves repressed by a1 X alpha 2, the failure to express FUS1 in a/alpha cells is probably the result of a cascade of regulatory activities; repression of the activators by a1 X alpha 2 in turn precludes transcription of FUS1. In addition to regulation of FUS1 by cell type, transcription from the locus increased 10-fold or more when a or alpha cells were exposed to the opposing mating pheromone. To investigate the function of the Fus1 protein, we created fus1 null mutants. In fus1 X fus1 matings, the cells of a mating pair adhered tightly and appeared to form zygotes. However, the zygotes were abnormal. Within the conjugation bridge the contained a partition that prevented nuclear fusion and mixing of organelles. The predicted sequence of the Fus1 protein (deduced from the FUS1 DNA sequence) and subcellular fractionation studies with Fus1-beta-galactosidase hybrid proteins suggest that Fus1 is a membrane or secreted protein. Thus, Fus1 may be located at a position within the cell where it is poised to catalyze cell wall or plasma membrane fusion.

244 citations

Journal ArticleDOI
TL;DR: Testing peptide mimetics from the predicted binding sites in the disintegrin domains of the five testis-expressed ADAMs in a sperm–egg plasma membrane adhesion and fusion assay indicates that a second ADAM family member, cyritestin, functions with fertilin β in sperm– egg plasma membraneAdhesion leading to fusion.
Abstract: Sperm-egg plasma membrane fusion is preceded by sperm adhesion to the egg plasma membrane. Cell-cell adhesion frequently involves multiple adhesion molecules on the adhering cells. One sperm surface protein with a role in sperm-egg plasma membrane adhesion is fertilin, a transmembrane heterodimer (alpha and beta subunits). Fertilin alpha and beta are the first identified members of a new family of membrane proteins that each has the following domains: pro-, metalloprotease, disintegrin, cysteine-rich, EGF-like, transmembrane, and cytoplasmic domain. This protein family has been named ADAM because all members contain a disintegrin and metalloprotease domain. Previous studies indicate that the disintegrin domain of fertilin beta functions in sperm-egg adhesion leading to fusion. Full length cDNA clones have been isolated for five ADAMs expressed in mouse testis: fertilin alpha, fertilin beta, cyritestin, ADAM 4, and ADAM 5. The presence of the disintegrin domain, a known integrin ligand, suggests that like fertilin beta, other testis ADAMs could be involved in sperm adhesion to the egg membrane. We tested peptide mimetics from the predicted binding sites in the disintegrin domains of the five testis-expressed ADAMs in a sperm-egg plasma membrane adhesion and fusion assay. The active site peptide from cyritestin strongly inhibited (80-90%) sperm adhesion and fusion and was a more potent inhibitor than the fertilin beta active site peptide. Antibodies generated against the active site region of either cyritestin or fertilin beta also strongly inhibited (80-90%) both sperm-egg adhesion and fusion. Characterization of these two ADAM family members showed that they are both processed during sperm maturation and present on mature sperm. Indirect immunofluorescence on live, acrosome-reacted sperm using antibodies against either cyritestin or fertilin beta showed staining of the equatorial region, a region of the sperm membrane that participates in the early steps of membrane fusion. Collectively, these data indicate that a second ADAM family member, cyritestin, functions with fertilin beta in sperm-egg plasma membrane adhesion leading to fusion.

236 citations

Network Information
Related Topics (5)
Endoplasmic reticulum
48.3K papers, 2.4M citations
76% related
Intracellular
41.4K papers, 1.8M citations
73% related
Signal transduction
122.6K papers, 8.2M citations
72% related
Protein kinase A
68.4K papers, 3.9M citations
72% related
Cell adhesion
29.6K papers, 1.8M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202111
202010
20193
20174
20163
20153