scispace - formally typeset
Search or ask a question
Topic

Plasma oscillation

About: Plasma oscillation is a research topic. Over the lifetime, 7591 publications have been published within this topic receiving 159001 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a kinetic theory approach to collision processes in ionized and neutral gases is presented, which is adequate for the unified treatment of the dynamic properties of gases over a continuous range of pressures from the Knudsen limit to the high pressure limit where the aerodynamic equations are valid.
Abstract: A kinetic theory approach to collision processes in ionized and neutral gases is presented. This approach is adequate for the unified treatment of the dynamic properties of gases over a continuous range of pressures from the Knudsen limit to the high-pressure limit where the aerodynamic equations are valid. It is also possible to satisfy the correct microscopic boundary conditions. The method consists in altering the collision terms in the Boltzmann equation. The modified collision terms are constructed so that each collision conserves particle number, momentum, and energy; other characteristics such as persistence of velocities and angular dependence may be included. The present article illustrates the technique for a simple model involving the assumption of a collision time independent of velocity; this model is applied to the study of small amplitude oscillations of one-component ionized and neutral gases. The initial value problem for unbounded space is solved by performing a Fourier transformation on the space variables and a Laplace transformation on the time variable. For uncharged gases there results the correct adiabatic limiting law for sound-wave propagation at high pressures and, in addition, one obtains a theory of absorption and dispersion of sound for arbitrary pressures. For ionized gases the difference in the nature of the organization in the low-pressure plasma oscillations and in high-pressure sound-type oscillations is studied. Two important cases are distinguished. If the wavelengths of the oscillations are long compared to either the Debye length or the mean free path, a small change in frequency is obtained as the collision frequency varies from zero to infinity. The accompanying absorption is small; it reaches its maximum value when the collision frequency equals the plasma frequency. The second case refers to waves shorter than both the Debye length and the mean free path; these waves are characterized by a very heavy absorption.

6,627 citations

Journal ArticleDOI
TL;DR: A mechanism for depression of the plasma frequency into the far infrared or even GHz band is proposed: Periodic structures built of very thin wires dilute the average concentration of electrons and considerably enhance the effective electron mass through self-inductance.
Abstract: The plasmon is a well established collective excitation of metals in the visible and near UV, but at much lower frequencies dissipation destroys all trace of the plasmon and typical Drude behavior sets in. We propose a mechanism for depression of the plasma frequency into the far infrared or even GHz band: Periodic structures built of very thin wires dilute the average concentration of electrons and considerably enhance the effective electron mass through self-inductance. Computations replicate the key features and confirm our analytic theory. The new structure has novel properties not observed before in the GHz band, including some possible impact on superconducting properties.

3,954 citations

Journal ArticleDOI
TL;DR: In this article, the real and imaginary parts of the dielectric constant and the function describing the energy loss of fast electrons traversing the materials are deduced from the Kramers-Kronig relations.
Abstract: Reflectance data are presented for Si, Ge, GaP, GaAs, InAs, and InSb in the range of photon energies between 1.5 and 25 eV. The real and imaginary parts of the dielectric constant and the function describing the energy loss of fast electrons traversing the materials are deduced from the Kramers-Kronig relations. The results can be described in terms of interband transitions and plasma oscillations. A theory based on the frequency-dependent dielectric constant in the random phase approximation is presented and used to analyze these data above 12 eV, where the oscillator strengths coupling the valence and conduction bands are practically exhausted. The theory predicts and the experiments confirm essentially free electron-like behavior before the onset of $d$-band excitations and a plasma frequency modified from that of free electrons due to oscillator strength coupling between valence and $d$ bands and $d$-band screening effects. These complications are absent in Si. The energy loss functions obtained from optical and characteristic energy loss experiments are also found to be in good agreement. Arguments for interpreting structure in the reflectance curves above 16 eV in terms of $d$-band excitations are given.

1,749 citations

Journal ArticleDOI
TL;DR: In this paper, the properties of large amplitude microscale Alfven waves in interplanetary medium were investigated using plasma and magnetic field data from Mariner 5. But the results were limited to a single-dimensional image.
Abstract: Dynamic nonshock properties of large amplitude microscale Alfven waves in interplanetary medium, using plasma and magnetic field data from Mariner 5

1,714 citations

Book
01 Jan 1992
TL;DR: In this paper, the straight-trajectory approximation quasilinear diffusion in a magnetized plasma bounce-averaged quasilevel diffusion was proposed. But this diffusion is not suitable for a hot plasma in a magnetic field.
Abstract: Wave normal surfaces waves in a cold uniform plasma causality, acoustic waves and simple drift waves energy flow and accessibility Kruskal-Schwarzschild solutions for a bounded plasma oscillations in bonded plasmas plasma models with discrete structure longitudinal oscillations in a plasma of continuous structure absolute and convective instability susceptibilities for a hot plasma in a magnetic field waves in magnetized uniform media effects on waves from weak collisions reflection, absorption and mode conversion nonuniform plasmas the straight-trajectory approximation quasilinear diffusion quasilinear diffusion in a magnetized plasma bounce-averaged quasilinear diffusion in a magnetized plasma bounce-averaged quasilinear diffusion.

1,518 citations


Network Information
Related Topics (5)
Plasma
89.6K papers, 1.3M citations
90% related
Magnetic field
167.5K papers, 2.3M citations
89% related
Electron
111.1K papers, 2.1M citations
89% related
Electric field
87.1K papers, 1.4M citations
89% related
Ionization
67.7K papers, 1.3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202323
202258
2021108
2020125
2019120
2018145