scispace - formally typeset
Search or ask a question
Topic

Plasmon

About: Plasmon is a research topic. Over the lifetime, 32562 publications have been published within this topic receiving 983941 citations. The topic is also known as: Plasma oscillation quanta & Plasmons.


Papers
More filters
Book
01 Jan 1953
TL;DR: In this paper, the Hartree-Fock Approximation of many-body techniques and the Electron Gas Polarons and Electron-phonon Interaction are discussed.
Abstract: Mathematical Introduction Acoustic Phonons Plasmons, Optical Phonons, and Polarization Waves Magnons Fermion Fields and the Hartree-Fock Approximation Many-body Techniques and the Electron Gas Polarons and the Electron-phonon Interaction Superconductivity Bloch Functions - General Properties Brillouin Zones and Crystal Symmetry Dynamics of Electrons in a Magnetic Field: de Haas-van Alphen Effect and Cyclotron Resonance Magnetoresistance Calculation of Energy Bands and Fermi Surfaces Semiconductor Crystals I: Energy Bands, Cyclotron Resonance, and Impurity States Semiconductor Crystals II: Optical Absorption and Excitons Electrodynamics of Metals Acoustic Attenuation in Metals Theory of Alloys Correlation Functions and Neutron Diffraction by Crystals Recoilless Emission Green's Functions - Application to Solid State Physics Appendix: Perturbation Theory and the Electron Gas Index.

21,954 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Abstract: The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

9,086 citations

Book
15 May 2007
TL;DR: In this paper, the authors discuss the role of surface plasmon polaritons at metal/insulator interfaces and their application in the propagation of surfaceplasmon waveguides.
Abstract: Fundamentals of Plasmonics.- Electromagnetics of Metals.- Surface Plasmon Polaritons at Metal / Insulator Interfaces.- Excitation of Surface Plasmon Polaritons at Planar Interfaces.- Imaging Surface Plasmon Polariton Propagation.- Localized Surface Plasmons.- Electromagnetic Surface Modes at Low Frequencies.- Applications.- Plasmon Waveguides.- Transmission of Radiation Through Apertures and Films.- Enhancement of Emissive Processes and Nonlinearities.- Spectroscopy and Sensing.- Metamaterials and Imaging with Surface Plasmon Polaritons.- Concluding Remarks.

7,238 citations

Journal ArticleDOI
TL;DR: This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size and introduces a new form of L SPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances.
Abstract: Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles is a powerful technique for chemical and biological sensing experiments. Moreover, the LSPR is responsible for the electromagnetic-field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes. This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size. We also describe studies on the distance dependence of the enhanced electromagnetic field and the relationship between the plasmon resonance and the Raman excitation energy. Lastly, we introduce a new form of LSPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances. The results from these fundamental studies guide the design of new sensing experiments, illustrated through applications in which researchers use both LSPR wavelength-shift sensing and SERS to detect molecules of chemical and biological relevance.

5,444 citations

Journal ArticleDOI
TL;DR: A mechanism for depression of the plasma frequency into the far infrared or even GHz band is proposed: Periodic structures built of very thin wires dilute the average concentration of electrons and considerably enhance the effective electron mass through self-inductance.
Abstract: The plasmon is a well established collective excitation of metals in the visible and near UV, but at much lower frequencies dissipation destroys all trace of the plasmon and typical Drude behavior sets in. We propose a mechanism for depression of the plasma frequency into the far infrared or even GHz band: Periodic structures built of very thin wires dilute the average concentration of electrons and considerably enhance the effective electron mass through self-inductance. Computations replicate the key features and confirm our analytic theory. The new structure has novel properties not observed before in the GHz band, including some possible impact on superconducting properties.

3,954 citations


Network Information
Related Topics (5)
Graphene
144.5K papers, 4.9M citations
93% related
Band gap
86.8K papers, 2.2M citations
93% related
Thin film
275.5K papers, 4.5M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,429
20225,228
20211,726
20202,029
20192,180
20182,320