scispace - formally typeset
Search or ask a question
Topic

Plasmon

About: Plasmon is a research topic. Over the lifetime, 32562 publications have been published within this topic receiving 983941 citations. The topic is also known as: Plasma oscillation quanta & Plasmons.


Papers
More filters
Journal ArticleDOI
27 Aug 2009-Nature
TL;DR: It is shown that 44-nm-diameter nanoparticles with a gold core and dye-doped silica shell allow us to completely overcome the loss of localized surface plasmons by gain and realize a spaser, and that outcoupling of surface plasmon oscillations to photonic modes at a wavelength of 531 nm makes this system the smallest nanolaser reported to date—and to the authors' knowledge the first operating at visible wavelengths.
Abstract: Nanoplasmonics — the nanoscale manipulation of surface plasmons (fluctuations in the electron density at a metallic surface) — could revolutionize applications ranging from sensing and biomedicine to imaging and information technology. But first, we need a simple and efficient method for actively generating coherent plasmonic fields. This is in theory possible with the spaser, first proposed in 2003 as a device that generates and amplifies surface plasmons in the same way that a laser generates and amplifies photons. Now Noginov et al. present the first unambiguous experimental demonstration of spasing, using 44-nm diameter nanoparticles with a gold core and dye-doped silica shell. The system generates stimulated emission of surface plasmons in the same way as a laser generates stimulated emission of coherent photons, and has been used to implement the smallest nanolaser reported to date, and the first operating at visible wavelengths. Nanoplasmonics promises to revolutionize applications ranging from sensing and biomedicine to imaging and information technology, but its full development is hindered by the lack of devices that can generate coherent plasmonic fields. In theory, this is possible with a so-called 'spaser' — analogous to a laser — which would generate stimulated emission of surface plasmons. This is now realized experimentally, and should enable many new technological developments. One of the most rapidly growing areas of physics and nanotechnology focuses on plasmonic effects on the nanometre scale, with possible applications ranging from sensing and biomedicine to imaging and information technology1,2. However, the full development of nanoplasmonics is hindered by the lack of devices that can generate coherent plasmonic fields. It has been proposed3 that in the same way as a laser generates stimulated emission of coherent photons, a ‘spaser’ could generate stimulated emission of surface plasmons (oscillations of free electrons in metallic nanostructures) in resonating metallic nanostructures adjacent to a gain medium. But attempts to realize a spaser face the challenge of absorption loss in metal, which is particularly strong at optical frequencies. The suggestion4,5,6 to compensate loss by optical gain in localized and propagating surface plasmons has been implemented recently7,8,9,10 and even allowed the amplification of propagating surface plasmons in open paths11. Still, these experiments and the reported enhancement of the stimulated emission of dye molecules in the presence of metallic nanoparticles12,13,14 lack the feedback mechanism present in a spaser. Here we show that 44-nm-diameter nanoparticles with a gold core and dye-doped silica shell allow us to completely overcome the loss of localized surface plasmons by gain and realize a spaser. And in accord with the notion that only surface plasmon resonances are capable of squeezing optical frequency oscillations into a nanoscopic cavity to enable a true nanolaser15,16,17,18, we show that outcoupling of surface plasmon oscillations to photonic modes at a wavelength of 531 nm makes our system the smallest nanolaser reported to date—and to our knowledge the first operating at visible wavelengths. We anticipate that now it has been realized experimentally, the spaser will advance our fundamental understanding of nanoplasmonics and the development of practical applications.

1,998 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that plasmons in doped graphene simultaneously enable low-loss and significant wave localization for frequencies below that of the optical phonon branch hbar omega{;Oph};\approx 0.2 eV.
Abstract: We point out that plasmons in doped graphene simultaneously enable low-losses and significant wave localization for frequencies below that of the optical phonon branch hbar omega_{;Oph};\approx 0.2 eV. Large plasmon losses occur in the interband regime (via excitation of electron-hole pairs), which can be pushed towards higher frequencies for higher doping values. For sufficiently large dopings, there is a bandwidth of frequencies from omega_{;Oph}; up to the interband threshold, where a plasmon decay channel via emission of an optical phonon together with an electron-hole pair is nonegligible. The calculation of losses is performed within the framework of a random-phase approximation and number conserving relaxation-time approximation. The measured DC relaxation-time serves as an input parameter characterizing collisions with impurities, whereas the contribution from optical phonons is estimated from the influence of the electron-phonon coupling on the optical conductivity. Optical properties of plasmons in graphene are in many relevant aspects similar to optical properties of surface plasmons propagating on dielectric-metal interface, which have been drawing a lot of interest lately because of their importance for nanophotonics. Therefore, the fact that plasmons in graphene could have low losses for certain frequencies makes them potentially interesting for nanophotonic applications.

1,983 citations

Journal ArticleDOI
TL;DR: In this article, a hybrid optical waveguide is proposed to confine surface plasmon polaritons over large distances using a dielectric nanowire separated from a metal surface by a nanoscale gap.
Abstract: The emerging field of nanophotonics1 addresses the critical challenge of manipulating light on scales much smaller than the wavelength. However, very few feasible practical approaches exist at present. Surface plasmon polaritons2,3 are among the most promising candidates for subwavelength optical confinement3,4,5,6,7,8,9,10. However, studies of long-range surface plasmon polaritons have only demonstrated optical confinement comparable to that of conventional dielectric waveguides, because of practical issues including optical losses and stringent fabrication demands3,11,12,13. Here, we propose a new approach that integrates dielectric waveguiding with plasmonics. The hybrid optical waveguide consists of a dielectric nanowire separated from a metal surface by a nanoscale dielectric gap. The coupling between the plasmonic and waveguide modes across the gap enables ‘capacitor-like’ energy storage that allows effective subwavelength transmission in non-metallic regions. In this way, surface plasmon polaritons can travel over large distances (40–150 µm) with strong mode confinement (ranging from λ2/400 to λ2/40). This approach is fully compatible with semiconductor fabrication techniques and could lead to truly nanoscale semiconductor-based plasmonics and photonics. Xiang Zhang and colleagues from the University of California, Berkeley, propose a new approach for confining light on scales much smaller than the wavelength of light. Using hybrid waveguides that incorporate dielectric and plasmonic waveguiding techniques, they are able to confine surface plasmon polaritons very strongly over large distances. The advance could lead to truly nanoscale plasmonics and photonics.

1,905 citations

Journal ArticleDOI
TL;DR: This work investigated the dependence of the sensitivity of the surface plasmon resonance response to changes in their surrounding environment and the relative contribution of optical scattering to the total extinction, on the size and shape of nanorods and the type of metal, that is, Au vs Ag.
Abstract: Plasmonic metal nanoparticles have great potential for chemical and biological sensor applications, due to their sensitive spectral response to the local environment of the nanoparticle surface and ease of monitoring the light signal due to their strong scattering or absorption. In this work, we investigated the dependence of the sensitivity of the surface plasmon resonance (frequency and bandwidth) response to changes in their surrounding environment and the relative contribution of optical scattering to the total extinction, on the size and shape of nanorods and the type of metal, that is, Au vs Ag. Theoretical consideration on the surface plasmon resonance condition revealed that the spectral sensitivity, defined as the relative shift in resonance wavelength with respect to the refractive index change of surrounding materials, has two controlling factors: first the bulk plasma wavelength, a property dependent on the metal type, and second on the aspect ratio of the nanorods which is a geometrical parameter. It is found that the sensitivity is linearly proportional to both these factors. To quantitatively examine the dependence of the spectral sensitivity on the nanorod metal composition and the aspect ratio, the discrete dipole approximation method was used for the calculation of optical spectra of Ag-Au alloy metal nanorods as a function of Ag concentration. It is observed that the sensitivity does not depend on the type of the metal but depends largely on the aspect ratio of nanorods. The direct dependence of the sensitivity on the aspect ratio becomes more prominent as the size of nanorods becomes larger. However, the use of larger nanoparticles may induce an excessive broadening of the resonance spectrum due to an increase in the contribution of multipolar excitations. This restricts the sensing resolution. The insensitivity of the plasmon response to the metal composition is attributable to the fact that the bulk plasma frequency of the metal, which determines the spectral dispersion of the real dielectric function of metals and the surface plasmon resonance condition, has a similar value for the noble metals. On the other hand, nanorods with higher Ag concentration show a great enhancement in magnitude and sharpness of the plasmon resonance band, which gives better sensing resolution despite similar plasmon response. Furthermore, Ag nanorods have an additional advantage as better scatterers compared with Au nanorods of the same size.

1,886 citations

Journal ArticleDOI
TL;DR: In this article, the basic physics of surface-plasmon excitations occurring at metal/dielectric interfaces with special emphasis on the possibility of using such excitations for the localization of electromagnetic energy in one, two, and three dimensions, in a context of applications in sensing and waveguiding for functional photonic devices.
Abstract: We review the basic physics of surface-plasmon excitations occurring at metal/dielectric interfaces with special emphasis on the possibility of using such excitations for the localization of electromagnetic energy in one, two, and three dimensions, in a context of applications in sensing and waveguiding for functional photonic devices. Localized plasmon resonances occurring in metallic nanoparticles are discussed both for single particles and particle ensembles, focusing on the generation of confined light fields enabling enhancement of Raman-scattering and nonlinear processes. We then survey the basic properties of interface plasmons propagating along flat boundaries of thin metallic films, with applications for waveguiding along patterned films, stripes, and nanowires. Interactions between plasmonic structures and optically active media are also discussed.

1,881 citations


Network Information
Related Topics (5)
Graphene
144.5K papers, 4.9M citations
93% related
Band gap
86.8K papers, 2.2M citations
93% related
Thin film
275.5K papers, 4.5M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,429
20225,228
20211,726
20202,029
20192,180
20182,320