scispace - formally typeset
Search or ask a question
Topic

Platelet-derived growth factor

About: Platelet-derived growth factor is a research topic. Over the lifetime, 5312 publications have been published within this topic receiving 388949 citations. The topic is also known as: GO:1990265 & Platelet-derived growth factor.


Papers
More filters
Journal ArticleDOI
TL;DR: In recognition of its generalized pleiotypic actions, sulfation factor was renamed somatomedin (mediator of the effects of somatotropin) and was included in the emerging classification of broad spectrum growth factors along with platelet derived growth factor, fibroblast growth factors, and epidermal growth factor.
Abstract: I. Introduction THE insulin-like growth factors were discovered on the basis of their ability to stimulate cartilage sulfation and to replace the “sulfation factor activity” of GH, as determined using an in vivo assay, in an in vitro test system (1). The biological significance of this finding was quickly expanded beyond the study of cartilage sulfation to include stimulation of DNA synthesis (2), proteoglycan synthesis (3), glycosaminoglycan synthesis (4), and protein synthesis (5). Most of these studies used tissue preparations such as isolated diaphragm, cartilage, or epididymal fat pads to study biologicalactivity. In recognition of its generalized pleiotypic actions, in the early 1970's sulfation factor was renamed somatomedin (mediator of the effects of somatotropin) and was included in the emerging classification of broad spectrum growth factors along with platelet derived growth factor, fibroblast growth factor, and epidermal growth factor (6). During the period in which the biological actions of ...

4,706 citations

Journal ArticleDOI
TL;DR: Monoclonal antibody assessment of cancellous cellular marrow grafts demonstrated cells that were capable of responding to the growth factors by bearing cell membrane receptors and evidenced a radiographic maturation rate 1.62 to 2.16 times that of grafts without platelet-rich plasma.
Abstract: Platelet-rich plasma is an autologous source of platelet-derived growth factor and transforming growth factor beta that is obtained by sequestering and concentrating platelets by gradient density centrifugation. This technique produced a concentration of human platelets of 338% and identified platelet-derived growth factor and transforming growth factor beta within them. Monoclonal antibody assessment of cancellous cellular marrow grafts demonstrated cells that were capable of responding to the growth factors by bearing cell membrane receptors. The additional amounts of these growth factors obtained by adding platelet-rich plasma to grafts evidenced a radiographic maturation rate 1.62 to 2.16 times that of grafts without platelet-rich plasma. As assessed by histomorphometry, there was also a greater bone density in grafts in which platelet-rich plasma was added (74.0% +/- 11%) than in grafts in which platelet-rich plasma was not added (55.1% +/- 8%; p = 0.005).

2,587 citations

Journal ArticleDOI
13 Oct 1995-Science
TL;DR: The results suggest that H2O2 may act as a signal-transducing molecule, and they suggest a potential mechanism for the cardioprotective effects of antioxidants.
Abstract: Stimulation of rat vascular smooth muscle cells (VSMCs) by platelet-derived growth factor (PDGF) transiently increased the intracellular concentration of hydrogen peroxide (H2O2). This increase could be blunted by increasing the intracellular concentration of the scavenging enzyme catalase or by the chemical antioxidant N-acetylcysteine. The response of VSMCs to PDGF, which includes tyrosine phosphorylation, mitogen-activated protein kinase stimulation, DNA synthesis, and chemotaxis, was inhibited when the growth factor-stimulated rise in H2O2 concentration was blocked. These results suggest that H2O2 may act as a signal-transducing molecule, and they suggest a potential mechanism for the cardioprotective effects of antioxidants.

2,575 citations

Journal ArticleDOI
TL;DR: Clinical and translational implications of these advances have become clear, and have begun to impact significantly on the management and outlook of patients with chronic liver disease.

2,421 citations

Journal ArticleDOI
TL;DR: Structural and functional properties of PDGF and PDGF receptors, the mechanism whereby PDGF exerts its cellular effects, and the role ofPDGF in normal and diseased tissues are discussed.
Abstract: Platelet-derived growth factor (PDGF) is a major mitogen for connective tissue cells and certain other cell types. It is a dimeric molecule consisting of disulfide-bonded, structurally similar A- and B-polypeptide chains, which combine to homo- and heterodimers. The PDGF isoforms exert their cellular effects by binding to and activating two structurally related protein tyrosine kinase receptors, denoted the alpha-receptor and the beta-receptor. Activation of PDGF receptors leads to stimulation of cell growth, but also to changes in cell shape and motility; PDGF induces reorganization of the actin filament system and stimulates chemotaxis, i.e., a directed cell movement toward a gradient of PDGF. In vivo, PDGF has important roles during the embryonic development as well as during wound healing. Moreover, overactivity of PDGF has been implicated in several pathological conditions. The sis oncogene of simian sarcoma virus (SSV) is related to the B-chain of PDGF, and SSV transformation involves autocrine stimulation by a PDGF-like molecule. Similarly, overproduction of PDGF may be involved in autocrine and paracrine growth stimulation of human tumors. Overactivity of PDGF has, in addition, been implicated in nonmalignant conditions characterized by an increased cell proliferation, such as atherosclerosis and fibrotic conditions. This review discusses structural and functional properties of PDGF and PDGF receptors, the mechanism whereby PDGF exerts its cellular effects, and the role of PDGF in normal and diseased tissues.

2,364 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
88% related
Cellular differentiation
90.9K papers, 6M citations
87% related
Inflammation
76.4K papers, 4M citations
87% related
Cell culture
133.3K papers, 5.3M citations
87% related
Apoptosis
115.4K papers, 4.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202344
202261
202141
202033
201929
201852