Topic
Platinum
About: Platinum is a(n) research topic. Over the lifetime, 49675 publication(s) have been published within this topic receiving 1150035 citation(s). The topic is also known as: Pt & element 78.
Papers published on a yearly basis
Papers
More filters
TL;DR: In this article, the absorption index at the wave length of the band maximum was found to be proportional to the total concentration of metal at shorter wave lengths, however, deviations were observed, the absorption increasing more rapidly with concentration than Beers' law would demand.
Abstract: solutions investigated, the absorption index diminishing approximately 1% for a rise in temperature of one degree. 6. In liquid ammonia rough measurements of concentration showed the absorption index to be proportional to the total concentration of metal. 7. In methylamine the absorption index, at the wave length of the band maximum is also proportional to the total concentration of metal. At shorter wave lengths, however, deviations were observed, the absorption increasing more rapidly with concentration than Beers’ law would demand. The ratio of the absorption index a t 650pp to that a t 53opp increases not only with increasing concentration of the metal but also with increasing concentration of the reaction product of the metal with methylamine, and probably also with increasing temperature. 8. These observations can be accounted for by the following hypotheses: The color in all cases is due to electrons combined with the solvent. In ammonia the dissociation of the metal into electrons is nearly complete, and the concentration of electrons uncombine4 with solvent is negligible compared with that of the solvated electrons. In other words, the solvation of the electrons is nearly complete. In methylamine, on the other hand, the concentration of un-ionized metal is no longer negligible and is responsible for the increased absorption a t the shorter wave lengths. The solvation of the electrons in methylamine is incomplete and diminishes as the temperature is increased.
16,125 citations
TL;DR: It is reported that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells.
Abstract: The large-scale practical application of fuel cells will be difficult to realize if the expensive platinum-based electrocatalysts for oxygen reduction reactions (ORRs) cannot be replaced by other efficient, low-cost, and stable electrodes. Here, we report that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells. In air-saturated 0.1 molar potassium hydroxide, we observed a steady-state output potential of –80 millivolts and a current density of 4.1 milliamps per square centimeter at –0.22 volts, compared with –85 millivolts and 1.1 milliamps per square centimeter at –0.20 volts for a platinum-carbon electrode. The incorporation of electron-accepting nitrogen atoms in the conjugated nanotube carbon plane appears to impart a relatively high positive charge density on adjacent carbon atoms. This effect, coupled with aligning the NCNTs, provides a four-electron pathway for the ORR on VA-NCNTs with a superb performance.
5,694 citations
TL;DR: The resultant N-graphene was demonstrated to act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction via a four-electron pathway in alkaline fuel cells.
Abstract: Nitrogen-doped graphene (N-graphene) was synthesized by chemical vapor deposition of methane in the presence of ammonia. The resultant N-graphene was demonstrated to act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction via a four-electron pathway in alkaline fuel cells. To the best of our knowledge, this is the first report on the use of graphene and its derivatives as metal-free catalysts for oxygen reduction. The important role of N-doping to oxygen reduction reaction (ORR) can be applied to various carbon materials for the development of other metal-free efficient ORR catalysts for fuel cell applications, even new catalytic materials for applications beyond fuel cells.
3,360 citations
TL;DR: A family of non–precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power.
Abstract: The prohibitive cost of platinum for catalyzing the cathodic oxygen reduction reaction (ORR) has hampered the widespread use of polymer electrolyte fuel cells. We describe a family of non-precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power. The approach uses polyaniline as a precursor to a carbon-nitrogen template for high-temperature synthesis of catalysts incorporating iron and cobalt. The most active materials in the group catalyze the ORR at potentials within ~60 millivolts of that delivered by state-of-the-art carbon-supported platinum, combining their high activity with remarkable performance stability for non-precious metal catalysts (700 hours at a fuel cell voltage of 0.4 volts) as well as excellent four-electron selectivity (hydrogen peroxide yield <1.0%).
3,078 citations
TL;DR: Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5d orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.
Abstract: Platinum-based heterogeneous catalysts are critical to many important commercial chemical processes, but their efficiency is extremely low on a per metal atom basis, because only the surface active-site atoms are used. Catalysts with single-atom dispersions are thus highly desirable to maximize atom efficiency, but making them is challenging. Here we report the synthesis of a single-atom catalyst that consists of only isolated single Pt atoms anchored to the surfaces of iron oxide nanocrystallites. This single-atom catalyst has extremely high atom efficiency and shows excellent stability and high activity for both CO oxidation and preferential oxidation of CO in H-2. Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5d orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.
2,964 citations