scispace - formally typeset
Search or ask a question
Topic

Platinum

About: Platinum is a research topic. Over the lifetime, 49675 publications have been published within this topic receiving 1150035 citations. The topic is also known as: Pt & element 78.


Papers
More filters
Journal ArticleDOI
TL;DR: This GRAILS method is a general approach to the preparation of uniform shape and composition-controlled Pt alloy nanocrystals with cubic and octahedral morphologies under the same kind of reducing reaction condition.
Abstract: The shape of metal alloy nanocrystals plays an important role in catalytic performances. Many methods developed so far in controlling the morphologies of nanocrystals are however limited by the synthesis that is often material and shape specific. Here we show using a gas reducing agent in liquid solution (GRAILS) method, different Pt alloy (Pt-M, M = Co, Fe, Ni, Pd) nanocrystals with cubic and octahedral morphologies can be prepared under the same kind of reducing reaction condition. A broad range of compositions can also be obtained for these Pt alloy nanocrystals. Thus, this GRAILS method is a general approach to the preparation of uniform shape and composition-controlled Pt alloy nanocrystals. The area-specific oxygen reduction reaction (ORR) activities of Pt(3)Ni catalysts at 0.9 V are 0.85 mA/cm(2)(Pt) for the nanocubes, and 1.26 mA/cm(2)(Pt) for the nanooctahedra. The ORR mass activity of the octahedral Pt(3)Ni catalyst reaches 0.44 A/mg(Pt).

430 citations

Journal ArticleDOI
TL;DR: In this paper, the oxygen reduction reaction on a typical carbon supported Pt fuel cell catalyst in the presence of different anions was studied and it was shown that the reduction reaction activity decreases in the order ClO 4− HSO 4− Cl −, consistent with the increasing adsorption bond strength of the anions.

428 citations

Journal ArticleDOI
TL;DR: A novel strategy to realize the traction and stabilization of isolated Pt atoms in the nitrogen-containing porous carbon matrix (Pt@PCM) and the active sites are associated with the lattice-confined Pt centers and the activated carbon (C)/nitrogen (N) atoms at the adjacency of the isolated Pt centers.
Abstract: Constructing atomically dispersed platinum (Pt) electrocatalysts is essential to build high-performance and cost-effective electrochemical water-splitting systems. We present a novel strategy to realize the traction and stabilization of isolated Pt atoms in the nitrogen-containing porous carbon matrix (Pt@PCM). In comparison with the commercial Pt/C catalyst (20 weight %), the as-prepared Pt@PCM catalyst exhibits significantly boosted mass activity (up to 25 times) for hydrogen evolution reaction. Results of extended x-ray absorption fine structure investigation and density functional theory calculation suggest that the active sites are associated with the lattice-confined Pt centers and the activated carbon (C)/nitrogen (N) atoms at the adjacency of the isolated Pt centers. This strategy may provide insights into constructing highly efficient single-atom catalysts for different energy-related applications.

427 citations

Journal ArticleDOI
TL;DR: The design of a catalytic process for the selective formation of cis olefins is reported on on the basis of studies with model systems, providing an example for how catalytic selectivity may be controlled by controlling the shape of the catalytic particles.
Abstract: A catalytic process for the selective formation of cis olefins would help minimize the production of unhealthy trans fats during the partial hydrogenation of edible oils. Here we report on the design of such a process on the basis of studies with model systems. Temperature programmed desorption data on single crystals showed that the isomerization of trans olefins to their cis counterparts is promoted by (111) facets of platinum, and that such selectivity is reversed on more open surfaces. Quantum mechanics calculations suggested that the extra stability of cis olefins seen on hydrogen-saturated Pt(111) surfaces may be due to a lesser degree of surface reconstruction, a factor found to be significant in the adsorption on close-packed platinum surfaces. Kinetic data using catalysts made out of dispersed tetrahedral Pt nanoparticles corroborated the selective promotion of the trans-to-cis isomerization on the (111) facets of the metal. Our work provides an example for how catalytic selectivity may be controlled by controlling the shape of the catalytic particles.

427 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
90% related
Catalysis
400.9K papers, 8.7M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
88% related
Aqueous solution
189.5K papers, 3.4M citations
88% related
Hydrogen
132.2K papers, 2.5M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,041
20221,789
2021867
20201,180
20191,408
20181,449