scispace - formally typeset
Search or ask a question
Topic

Platinum

About: Platinum is a research topic. Over the lifetime, 49675 publications have been published within this topic receiving 1150035 citations. The topic is also known as: Pt & element 78.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, aqueous-phase reforming of 10 wt% ethylene glycol solutions was studied at temperatures of 483 and 498 K over Pt-black and Pt supported on TiO2, Al2O3, carbon, SiO2 and ZrO2.
Abstract: Aqueous-phase reforming of 10 wt% ethylene glycol solutions was studied at temperatures of 483 and 498 K over Pt-black and Pt supported on TiO2, Al2O3, carbon, SiO2, SiO2-Al2O3, ZrO2, CeO2, and ZnO. High activity for the production of H2 by aqueous-phase reforming was observed over Pt-black and over Pt supported on TiO2, carbon, and Al2O3 (i.e., turnover frequencies near 8-15 min-1 at 498 K); moderate catalytic activity for the production of hydrogen is demonstrated by Pt supported on SiO2-Al2O3 and ZrO2 (turnover frequencies near 5 min-1); and lower catalytic activity is exhibited by Pt supported on CeO2, ZnO, and SiO2 (H2 turnover frequencies lower than about 2 min-1). Pt supported on Al2O3, and to a lesser extent ZrO2, exhibits high selectivity for production of H2 and CO2 from aqueous-phase reforming of ethylene glycol. In contrast, Pt supported on carbon, TiO2, SiO2-Al2O3 and Pt-black produce measurable amounts of gaseous alkanes and liquid-phase compounds that would lead to alkanes at higher conversions (e.g., ethanol, acetic acid, acetaldehyde). The total rate of formation of these byproducts is about 1-3 min-1 at 498 K. An important bifunctional route for the formation of liquid-phase alkane-precursor compounds over less selective catalysts involves dehydration reactions on the catalyst support (or in the aqueous reforming solution) followed by hydrogenation reactions on Pt.

280 citations

Journal ArticleDOI
TL;DR: The potential at which the hydrogen peroxide reduction and oxidation reactions are equally likely to occur reflects the intrinsic affinity of the platinum surface for oxygenated species, hereby defined as the "ORR-corrected mixed potential" (c-MP).
Abstract: Understanding the hydrogen peroxide electrochemistry on platinum can provide information about the oxygen reduction reaction mechanism, whether H2O2 participates as an intermediate or not. The H2O2 oxidation and reduction reaction on polycrystalline platinum is a diffusion-limited reaction in 0.1 M HClO4. The applied potential determines the Pt surface state, which is then decisive for the direction of the reaction: when H2O2 interacts with reduced surface sites it decomposes producing adsorbed OH species; when it interacts with oxidized Pt sites then H2O2 is oxidized to O2 by reducing the surface. Electronic structure calculations indicate that the activation energies of both processes are low at room temperature. The H2O2 reduction and oxidation reactions can therefore be utilized for monitoring the potential-dependent oxidation of the platinum surface. In particular, the potential at which the hydrogen peroxide reduction and oxidation reactions are equally likely to occur reflects the intrinsic affinity of the platinum surface for oxygenated species. This potential can be experimentally determined as the crossing-point of linear potential sweeps in the positive direction for different rotation rates, hereby defined as the “ORR-corrected mixed potential” (c-MP).

280 citations

Journal ArticleDOI
TL;DR: High-performance yellow to red organic light-emitting devices (OLEDs) using these platinum(II) Schiff base complexes have been fabricated with the best efficiency up to 31 cd A(-1) and a device lifetime up to 77 000 h at 500 cd m(-2).
Abstract: The syntheses, crystal structures, and detailed investigations of the photophysical properties of phosphorescent platinum(II) Schiff base complexes are presented. All of these complexes exhibit intense absorption bands with lambda(max) in the range 417-546 nm, which are assigned to states of metal-to-ligand charge-transfer ((1)MLCT) (1)[Pt(5d)-->pi*(Schiff base)] character mixed with (1)[lone pair(phenoxide)-->pi*(imine)] charge-transfer character. The platinum(II) Schiff base complexes are thermally stable, with decomposition temperatures up to 495 degrees C, and show emission lambda(max) at 541-649 nm in acetonitrile, with emission quantum yields up to 0.27. Measurements of the emission decay times in the temperature range from 130 to 1.5 K give total zero-field splitting parameters of the emitting triplet state of 14-28 cm(-1). High-performance yellow to red organic light-emitting devices (OLEDs) using these platinum(II) Schiff base complexes have been fabricated with the best efficiency up to 31 cd A(-1) and a device lifetime up to 77 000 h at 500 cd m(-2).

279 citations

Journal ArticleDOI
TL;DR: In this paper, a model for the cyclic voltammetric behavior of polymeric films on electrode surfaces was proposed, which incorporates non-equivalent redox sites with interconversion between such sites, electron-transfer kinetics at substrate/film interface and diffusion within the film.

279 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
90% related
Catalysis
400.9K papers, 8.7M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
88% related
Aqueous solution
189.5K papers, 3.4M citations
88% related
Hydrogen
132.2K papers, 2.5M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,041
20221,789
2021867
20201,180
20191,408
20181,449