scispace - formally typeset
Search or ask a question
Topic

Pneumonia (non-human)

About: Pneumonia (non-human) is a research topic. Over the lifetime, 1187 publications have been published within this topic receiving 33146 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that Legionnaires' disease is caused by a gram-negative bacterium that may be responsible for widespread infection.
Abstract: To identify the etiologic agent of Legionnaire's disease, we examined patients' serum and tissue specimens in a search for toxins, bacteria, fungi, chlamydiae, rickettsiae and viruses. From the lungs of four of six patients we isolated a gram-negative, non-acid-fast bacillus in guinea pigs. The bacillus could be transferred to yolk sacs of embryonated eggs. Classification of this organism is incomplete. We used yolk-sac cultures of the bacillus as antigen to survey suspected serum specimens, employing antihuman-globulin fluorescent antibody. When compared to controls, specimens from 101 to 111 patients meeting clinical criteria of Legionnaires' disease showed diagnostic increases in antibody titers. Diagnostic increases were also found in 54 recent sporadic cases of severe pneumonia and, retrospectively, in stored serum from most patients in two other previously unsolved outbreaks of respiratory disease. We conclude that Legionnaires' disease is caused by a gram-negative bacterium that may be responsible for widespread infection.

1,173 citations

Journal ArticleDOI
TL;DR: What clinicians should know about hospital-acquired infections is updated to reflect the latest research on Gram-negative bacteria and antibiotic drug resistance.
Abstract: Hospital-acquired infections are most commonly associated with mechanical ventilation, invasive medical devices, or surgical procedures. Gram-negative bacteria are responsible for more than 30% of hospital-acquired infections and predominate in hospital-acquired pneumonia. They are highly efficient at up-regulating or acquiring mechanisms of antibiotic drug resistance, especially in the presence of antibiotic selection pressure. This review updates what clinicians should know about these often life-threatening infections.

1,114 citations

Journal ArticleDOI
TL;DR: Because H7N7 viruses have caused disease in mammals, including horses, seals, and humans, on several occasions in the past, they may be unusual in their zoonotic potential and, thus, form a pandemic threat to humans.
Abstract: Highly pathogenic avian influenza A viruses of subtypes H5 and H7 are the causative agents of fowl plague in poultry. Influenza A viruses of subtype H5N1 also caused severe respiratory disease in humans in Hong Kong in 1997 and 2003, including at least seven fatal cases, posing a serious human pandemic threat. Between the end of February and the end of May 2003, a fowl plague outbreak occurred in The Netherlands. A highly pathogenic avian influenza A virus of subtype H7N7, closely related to low pathogenic virus isolates obtained from wild ducks, was isolated from chickens. The same virus was detected subsequently in 86 humans who handled affected poultry and in three of their family members. Of these 89 patients, 78 presented with conjunctivitis, 5 presented with conjunctivitis and influenza-like illness, 2 presented with influenza-like illness, and 4 did not fit the case definitions. Influenza-like illnesses were generally mild, but a fatal case of pneumonia in combination with acute respiratory distress syndrome occurred also. Most virus isolates obtained from humans, including probable secondary cases, had not accumulated significant mutations. However, the virus isolated from the fatal case displayed 14 amino acid substitutions, some of which may be associated with enhanced disease in this case. Because H7N7 viruses have caused disease in mammals, including horses, seals, and humans, on several occasions in the past, they may be unusual in their zoonotic potential and, thus, form a pandemic threat to humans.

1,039 citations

Journal ArticleDOI
TL;DR: Cross species poultry-to-person transmission of this new reassortant H7N9 virus is associated with severe pneumonia and multiorgan dysfunction in human beings and monitoring of the viral evolution and further study of disease pathogenesis will improve disease management, epidemic control, and pandemic preparedness.

784 citations

Journal ArticleDOI
20 Dec 2019-Viruses
TL;DR: A global portrait of some of the most prevalent or emerging human respiratory viruses that have been associated with possible pathogenic processes in CNS infection, with a special emphasis on human coronaviruses.
Abstract: Respiratory viruses infect the human upper respiratory tract, mostly causing mild diseases. However, in vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, causing a more severe disease (e.g., pneumonia). Respiratory viruses can also exacerbate asthma and lead to various types of respiratory distress syndromes. Furthermore, as they can adapt fast and cross the species barrier, some of these pathogens, like influenza A and SARS-CoV, have occasionally caused epidemics or pandemics, and were associated with more serious clinical diseases and even mortality. For a few decades now, data reported in the scientific literature has also demonstrated that several respiratory viruses have neuroinvasive capacities, since they can spread from the respiratory tract to the central nervous system (CNS). Viruses infecting human CNS cells could then cause different types of encephalopathy, including encephalitis, and long-term neurological diseases. Like other well-recognized neuroinvasive human viruses, respiratory viruses may damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuro-immunopathology) and/or viral replication, which directly causes damage to CNS cells (virus-induced neuropathology). The etiological agent of several neurological disorders remains unidentified. Opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of these disorders whose etiology remains poorly understood. Herein, we present a global portrait of some of the most prevalent or emerging human respiratory viruses that have been associated with possible pathogenic processes in CNS infection, with a special emphasis on human coronaviruses.

782 citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202147
202060
201929
201830
201742
201630