scispace - formally typeset
Search or ask a question
Topic

Point distribution model

About: Point distribution model is a research topic. Over the lifetime, 1032 publications have been published within this topic receiving 47096 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work describes a method for building models by learning patterns of variability from a training set of correctly annotated images that can be used for image search in an iterative refinement algorithm analogous to that employed by Active Contour Models (Snakes).

7,969 citations

Journal ArticleDOI
Abstract: We describe a new method of matching statistical models of appearance to images. A set of model parameters control modes of shape and gray-level variation learned from a training set. We construct an efficient iterative matching algorithm by learning the relationship between perturbations in the model parameters and the induced image errors.

6,200 citations

Book
06 Sep 2016
TL;DR: In this article, the authors proposed a planar procrustes analysis for two-dimensional data and showed that it is possible to estimate the size and shape of a shape in images.
Abstract: Preliminaries: Size Measures and Shape Coordinates. Preliminaries: Planar Procrustes Analysis. Shape Space and Distance. General Procrustes Methods. Shape Models for Two Dimensional Data. Tangent Space Inference. Size--and--Shape. Distributions for Higher Dimensions. Deformations and Describing Shape Change. Shape in Images. Additional Topics. References and Author Index. Index.

2,410 citations

Journal ArticleDOI
TL;DR: The dissimilarities between sampled distributions of simple shape functions provide a robust method for discriminating between classes of objects in a moderately sized database, despite the presence of arbitrary translations, rotations, scales, mirrors, tessellations, simplifications, and model degeneracies.
Abstract: Measuring the similarity between 3D shapes is a fundamental problem, with applications in computer graphics, computer vision, molecular biology, and a variety of other fields. A challenging aspect of this problem is to find a suitable shape signature that can be constructed and compared quickly, while still discriminating between similar and dissimilar shapes.In this paper, we propose and analyze a method for computing shape signatures for arbitrary (possibly degenerate) 3D polygonal models. The key idea is to represent the signature of an object as a shape distribution sampled from a shape function measuring global geometric properties of an object. The primary motivation for this approach is to reduce the shape matching problem to the comparison of probability distributions, which is simpler than traditional shape matching methods that require pose registration, feature correspondence, or model fitting.We find that the dissimilarities between sampled distributions of simple shape functions (e.g., the distance between two random points on a surface) provide a robust method for discriminating between classes of objects (e.g., cars versus airplanes) in a moderately sized database, despite the presence of arbitrary translations, rotations, scales, mirrors, tessellations, simplifications, and model degeneracies. They can be evaluated quickly, and thus the proposed method could be applied as a pre-classifier in a complete shape-based retrieval or analysis system concerned with finding similar whole objects. The paper describes our early experiences using shape distributions for object classification and for interactive web-based retrieval of 3D models.

1,707 citations

Journal ArticleDOI
TL;DR: A generalization of the convex hull of a finite set of points in the plane leads to a family of straight-line graphs, "alpha -shapes," which seem to capture the intuitive notions of "fine shape" and "crude shape" of point sets.
Abstract: A generalization of the convex hull of a finite set of points in the plane is introduced and analyzed. This generalization leads to a family of straight-line graphs, " \alpha -shapes," which seem to capture the intuitive notions of "fine shape" and "crude shape" of point sets. It is shown that a-shapes are subgraphs of the closest point or furthest point Delaunay triangulation. Relying on this result an optimal O(n \log n) algorithm that constructs \alpha -shapes is developed.

1,648 citations


Network Information
Related Topics (5)
Image processing
229.9K papers, 3.5M citations
84% related
Image segmentation
79.6K papers, 1.8M citations
84% related
Feature (computer vision)
128.2K papers, 1.7M citations
84% related
Convolutional neural network
74.7K papers, 2M citations
83% related
Feature extraction
111.8K papers, 2.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233
202211
202117
202016
201927
201829