scispace - formally typeset
Search or ask a question
Topic

Point source

About: Point source is a research topic. Over the lifetime, 5077 publications have been published within this topic receiving 94091 citations.


Papers
More filters
Journal ArticleDOI
Markus Ackermann, Marco Ajello1, W. B. Atwood2, Luca Baldini3  +176 moreInstitutions (36)
TL;DR: In this paper, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmicray confinement volume (halo), and distribution of interstellar gas.
Abstract: The gamma-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi-LAT mission and compare with models of the diffuse gamma-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas and radiation fields. To assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the Xco-factor, the ratio between integrated CO-line intensity and molecular hydrogen column density, the fluxes and spectra of the gamma-ray point sources from the first Fermi-LAT catalogue, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as gamma rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but under-predict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point source populations and spectral variations of cosmic rays throughout the Galaxy.

686 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the results of the 9μ m and 18μ m AKARI all-sky survey and detail the operation and data processing leading to the point source detection and measurements.
Abstract: Context. AKARI is the first Japanese astronomical satellite dedicated to infrared astronomy. One of the main purposes of AKARI is the all-sky survey performed with six infrared bands between 9 μ m and 200 μ m during the period from 2006 May 6 to 2007 August 28. In this paper, we present the mid-infrared part (9 μ m and 18 μ m bands) of the survey carried out with one of the on-board instruments, the infrared camera (IRC).Aims. We present unprecedented observational results of the 9 μ m and 18 μ m AKARI all-sky survey and detail the operation and data processing leading to the point source detection and measurements.Methods. The raw data are processed to produce small images for every scan, and the point sources candidates are derived above the 5σ noise level per single scan. The celestial coordinates and fluxes of the events are determined statistically and the reliability of their detections is secured through multiple detections of the same source within milli-seconds, hours, and months from each other.Results. The sky coverage is more than 90% for both bands. A total of 877 091 sources (851 189 for 9 μ m, 195 893 for 18 μ m) are confirmed and included in the current release of the point source catalog. The detection limit for point sources is 50 mJy and 90 mJy for the 9 μ m and 18 μ m bands, respectively. The position accuracy is estimated to be better than 2'' . Uncertainties in the in-flight absolute flux calibration are estimated to be 3% for the 9 μ m band and 4% for the 18 μ m band. The coordinates and fluxes of detected sources in this survey are also compared with those of the IRAS survey and are found to be statistically consistent.

656 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a variety of boundary conditions stipulated on the Radiative Transfer Equation can be implemented in a FEM approach, as well as the specification of a light source by a Neumann condition rather than an isotropic point source.
Abstract: This paper extends our work on applying the Finite Element Method (FEM) to the propagation of light in tissue. We address herein the topics of boundary conditions and source specification for this method. We demonstrate that a variety of boundary conditions stipulated on the Radiative Transfer Equation can be implemented in a FEM approach, as well as the specification of a light source by a Neumann condition rather than an isotropic point source. We compare results for a number of different combinations of boundary and source conditions under FEM, as well as the corresponding cases in a Monte Carlo model.

642 citations

Journal ArticleDOI
TL;DR: Experimental data were used to compare images reconstructed by the standard iterative reconstruction software and the one modeling the response function, and the results showed that the modeling of the responsefunction improves both spatial resolution and noise properties.
Abstract: The quality of images reconstructed by statistical iterative methods depends on an accurate model of the relationship between image space and projection space through the system matrix. The elements of the system matrix for the clinical Hi-Rez scanner were derived by processing the data measured for a point source at different positions in a portion of the field of view. These measured data included axial compression and azimuthal interleaving of adjacent projections. Measured data were corrected for crystal and geometrical efficiency. Then, a whole system matrix was derived by processing the responses in projection space. Such responses included both geometrical and detection physics components of the system matrix. The response was parameterized to correct for point source location and to smooth for projection noise. The model also accounts for axial compression (span) used on the scanner. The forward projector for iterative reconstruction was constructed using the estimated response parameters. This paper extends our previous work to fully three-dimensional. Experimental data were used to compare images reconstructed by the standard iterative reconstruction software and the one modeling the response function. The results showed that the modeling of the response function improves both spatial resolution and noise properties

520 citations


Network Information
Related Topics (5)
Scattering
152.3K papers, 3M citations
80% related
Turbulence
112.1K papers, 2.7M citations
79% related
Magnetic field
167.5K papers, 2.3M citations
79% related
Beam (structure)
155.7K papers, 1.4M citations
76% related
Particle
96.5K papers, 1.9M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202350
2022133
2021103
2020135
2019123
2018133