scispace - formally typeset
Search or ask a question
Topic

Point source

About: Point source is a research topic. Over the lifetime, 5077 publications have been published within this topic receiving 94091 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper shows how these Green's functions can be written in terms of 2 x 2 transfer matrices of the type commonly used to find the fields in a dielectric stack due to an incident plane wave, and shows that this follows from the Lorentz reciprocity theorem.
Abstract: There are several kinds of experiments that can be done with multilayer stacks of dielectric media which require an understanding of light emission by sources within the stack for their analysis. These experiments may involve, for example, light-emitting tunnel junctions, Raman scattering in Kretschmann and other multilayered geometries, and Rayleigh scattering by small amounts of surface or interface roughness, either alone or in combination with other processes. A set of electromagnetic Green's functions for a multilayer stack of isotropic dielectric media [D. L. Mills and A. A. Maradudin, Phys. Rev. B 12, 2943 (1975)] gives the electric fields produced everywhere by a point source of current oscillating at a frequency f. These Green's functions can thus be used to solve this type of problem. In this paper we show how these Green's functions can be written in terms of 2\ifmmode\times\else\texttimes\fi{}2 transfer matrices of the type commonly used to find the fields in a dielectric stack due to an incident plane wave. With this simplification we can easily evaluate the Green's functions for a stack with an arbitrary number of layers. We further show that, when the electric fields generated by a point source within the stack are evaluated far away, they can be written directly in terms of the electric fields that would be generated at the location of the current source by plane waves incident from the direction of the observation point. We show that this follows from the Lorentz reciprocity theorem. Thus, in this case the formalism of Green's functions is not needed.

57 citations

Journal ArticleDOI
TL;DR: The first experimental evidence of coherent backscattering enhancement for transient elastic waves propagating in a two-dimensional chaotic cavity is reported, and the spatial shape of the coherent back scattering enhancement is well predicted by a generalization of the existing theory.
Abstract: We report the first experimental evidence of coherent backscattering enhancement for transient elastic waves propagating in a two-dimensional chaotic cavity. The time-integrated squared amplitude at the point source is twice as large as at the other points around the source. Contrary to analogous optical experiments, this effect is already clearly observable on a single realization. Especially, the spatial shape of the coherent backscattering enhancement is well predicted by a generalization of the existing theory.

57 citations

Patent
09 Sep 1998
TL;DR: In this paper, an optical improvement for angular position sensors, which may be used to determine the spatial coordinates of a small source of light (or other energy) in a 3D volume, is described.
Abstract: An optical improvement for angular position sensors, which may be used to determine the spatial coordinates of a small source of light (or other energy) in a 3-dimensional volume. Such sensors normally include a linear photosensitive image detector such as a photodiode array or a charge-coupled device (CCD). An irregular pattern of parallel slits is described which increases the amount of light gathered while avoiding the undesirable characteristics of lens optics for this application. One optimal type of irregular pattern is the uniformly redundant array. A mathematical correlation function together with a polynomial interpolation function can determine the displacement of the image on the detector and thereby the location of the source relative to one angular dimension. Given the locations and orientations of several sensors in a 3-dimensional coordinate system and given the angles measured by each, the location of the point source can be computed.

57 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a new algorithm called Matched LOCI (MLOCI) to improve the signal-to-noise ratio (S/N) of point and extended source detections around bright stars in direct imaging data.
Abstract: We present a new algorithm designed to improve the signal-to-noise ratio (S/N) of point and extended source detections around bright stars in direct imaging data.One of our innovations is that we insert simulated point sources into the science images, which we then try to recover with maximum S/N. This improves the S/N of real point sources elsewhere in the field. The algorithm, based on the locally optimized combination of images (LOCI) method, is called Matched LOCI or MLOCI. We show with Gemini Planet Imager (GPI) data on HD 135344 B and Near-Infrared Coronagraphic Imager (NICI) data on several stars that the new algorithm can improve the S/N of point source detections by 30–400% over past methods. We also find no increase in false detections rates. No prior knowledge of candidate companion locations is required to use MLOCI. On the other hand, while non-blind applications may yield linear combinations of science images that seem to increase the S/N of true sources by a factor >2, they can also yield false detections at high rates. This is a potential pitfall when trying to confirm marginal detections or to redetect point sources found in previous epochs. These findings are relevant to any method where the coefficients of the linear combination are considered tunable, e.g., LOCI and principal component analysis (PCA). Thus we recommend that false detection rates be analyzed when using these techniques.

57 citations

Journal ArticleDOI
TL;DR: In this paper, a new comprehensive point source database that includes nearly 100,000 industrial facilities in China was compiled, and the authors couple it with the frame of Multi-resolution Emission Inventory for China (MEIC), estimate point source emissions, combine point and area sources, and finally map China's anthropogenic emissions of 2013 at the spatial resolution of 30″×30″ (~1 km).
Abstract: New challenges are emerging in fine-scale air quality modeling in China due to a lack of high-resolution emission maps. Currently, only a few emission sources have accurate geographic locations (point sources), while a large part of sources, including industrial plants, are estimated as provincial totals (area sources) and spatially disaggregated onto grid cells based on proxies; this approach is reasonable to some extent but is highly questionable at fine spatial resolutions. Here, we compile a new comprehensive point source database that includes nearly 100,000 industrial facilities in China. We couple it with the frame of Multi-resolution Emission Inventory for China (MEIC), estimate point source emissions, combine point and area sources, and finally map China’s anthropogenic emissions of 2013 at the spatial resolution of 30″×30″ (~1 km). Consequently, the percentages of point source emissions in the total emissions increase from less than 30% in the MEIC up to a maximum of 84% for SO2 in 2013. The new point source-based emission maps show the uncoupled distribution of emissions and populations in space at fine spatial scales, however, such a pattern cannot be reproduced by any spatial proxy used in the conventional emissions mapping. This new accurate high-resolution emission mapping approach reduces the modeled biases of air pollutant concentrations in the densely populated areas compared to the raw MEIC inventory, thus improving the assessment of population exposure.

57 citations


Network Information
Related Topics (5)
Scattering
152.3K papers, 3M citations
80% related
Turbulence
112.1K papers, 2.7M citations
79% related
Magnetic field
167.5K papers, 2.3M citations
79% related
Beam (structure)
155.7K papers, 1.4M citations
76% related
Particle
96.5K papers, 1.9M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202350
2022133
2021103
2020135
2019123
2018133