scispace - formally typeset
Search or ask a question

Showing papers on "Polarimetry published in 2010"


Journal ArticleDOI
TL;DR: A synthetic aperture radar (SAR) with hybrid-polarity (CL-pol) architecture transmits circular polarization and receives two orthogonal, mutually coherent linear polarizations, which is one manifestation of compact polarimetry as mentioned in this paper.
Abstract: A synthetic aperture radar (SAR) with hybrid-polarity (CL-pol) architecture transmits circular polarization and receives two orthogonal, mutually coherent linear polarizations, which is one manifestation of compact polarimetry. The resulting radar is relatively simple to implement and has unique self-calibration features and low susceptibility to noise. It also enables maintenance of a larger swath coverage than fully polarimetric SAR systems. A research team composed of various departments of the Government of Canada evaluated this compact polarimetry mode configuration for application to soil moisture estimation, crop identification, ship detection, and sea-ice classification. This paper presents an overview of compact polarimetry, the approach developed for evaluation, and preliminary results for applications important to the Government of Canada. The implications of the results are also discussed with respect to future SAR missions such as the Canadian RADARSAT Constellation Mission, the American DESD...

253 citations


Journal ArticleDOI
TL;DR: The Imaging Magnetograph eXperiment (IMaX) is a spectropolarimeter built by four institutions in Spain that flew on board the Sunrise balloon-borne telesocope in June 2009 for almost six days over the Arctic Circle.
Abstract: The Imaging Magnetograph eXperiment (IMaX) is a spectropolarimeter built by four institutions in Spain that flew on board the Sunrise balloon-borne telesocope in June 2009 for almost six days over the Arctic Circle. As a polarimeter IMaX uses fast polarization modulation (based on the use of two liquid crystal retarders), real-time image accumulation, and dual beam polarimetry to reach polarization sensitivities of 0.1%. As a spectrograph, the instrument uses a LiNbO3 etalon in double pass and a narrow band pre-filter to achieve a spectral resolution of 85 mAA. IMaX uses the high Zeeman sensitive line of Fe I at 5250.2 AA and observes all four Stokes parameters at various points inside the spectral line. This allows vector magnetograms, Dopplergrams, and intensity frames to be produced that, after reconstruction, reach spatial resolutions in the 0.15-0.18 arcsec range over a 50x50 arcsec FOV. Time cadences vary between ten and 33 seconds, although the shortest one only includes longitudinal polarimetry. The spectral line is sampled in various ways depending on the applied observing mode, from just two points inside the line to 11 of them. All observing modes include one extra wavelength point in the nearby continuum. Gauss equivalent sensitivities are four Gauss for longitudinal fields and 80 Gauss for transverse fields per wavelength sample. The LOS velocities are estimated with statistical errors of the order of 5-40 m/s. The design, calibration and integration phases of the instrument, together with the implemented data reduction scheme are described in some detail.

222 citations


BookDOI
01 Jul 2010
TL;DR: X-ray polarimetry has attracted renewed interest in the field, and indeed several polarimetric missions have recently been proposed as discussed by the authors, which can join X-ray imaging, spectroscopy and timing as one of the main observational techniques in high energy astrophysics.
Abstract: Due to the advent of a new generation of detectors, X-ray polarimetry promises to join X-ray imaging, spectroscopy and timing as one of the main observational techniques in high energy astrophysics. This has renewed interest in the field, and indeed several polarimetric missions have recently been proposed. This volume provides a complete and up-to-date view of the subject for researchers in astrophysics. The contributors discuss the present status and perspectives of instruments, review current theoretical models, and examine future missions. As well as detailed papers, the book contains broad reviews that can be easily understood by astrophysicists new to the field.

97 citations


Journal ArticleDOI
TL;DR: The results show that, over a wide range of DOLP, the challenging objective of uncertainty within +/-0.005 has been achieved.
Abstract: We report on the construction and calibration of a dual photoelastic-modulator (PEM)-based polarimetric camera operating at 660?nm. This camera is our first prototype for a multispectral system being developed for airborne and spaceborne remote sensing of atmospheric aerosols. The camera includes a dual-PEM assembly integrated into a three-element, low-polarization reflective telescope and provides both intensity and polarization imaging. A miniaturized focal-plane assembly consisting of spectral filters and patterned wire-grid polarizers provides wavelength and polarimetric selection. A custom push-broom detector array with specialized signal acquisition, readout, and processing electronics captures the radiometric and polarimetric information. Focal-plane polarizers at orientations of 0 degrees and -45 degrees yield the normalized Stokes parameters q=Q/I and u=U/I respectively, which are then coregistered to obtain degree of linear polarization (DOLP) and angle of linear polarization. Laboratory test data, calibration results, and outdoor imagery acquired with the camera are presented. The results show that, over a wide range of DOLP, our challenging objective of uncertainty within +/-0.005 has been achieved.

74 citations


Journal ArticleDOI
TL;DR: In this article, a multicolor polarimetric measurement (UBV) was performed for the hot Jupiters HD189733b and confirmed the previously reported detection of polarization in the B band (Berdyugina et al. 2008).
Abstract: We report first multicolor polarimetric measurements (UBV bands) for the hot Jupiters HD189733b and confirm our previously reported detection of polarization in the B band (Berdyugina et al. 2008). The wavelength dependence of polarization indicates the dominance of Rayleigh scattering with a peak in the blue B and U bands of ~10^-4+/-10^-5 and at least a factor of two lower signal in the V band. The Rayleigh-like wavelength dependence, detected also in the transmitted light during transits, implies a rapid decrease of the polarization signal toward longer wavelengths. Therefore, the nondetection by Wiktorowicz (2009), based on a measurement integrated within a broad passband covering the V band and partly B and R bands, is inconclusive and consistent with our detection in B. We discuss possible sources of the polarization and demonstrate that effects of incomplete cancellation of stellar limb polarization due to starspots or tidal perturbations are negligible as compared to scattering polarization in the planetary atmosphere. We compare the observations with a Rayleigh-Lambert model and determine effective radii and geometrical albedos for different wavelengths. We find a close similarity of the wavelength dependent geometrical albedo with that of the Neptune atmosphere, which is known to be strongly influenced by Rayleigh and Raman scattering. Our result establishes polarimetry as a reliable means for directly studying exoplanetary atmospheres.

73 citations


Journal ArticleDOI
TL;DR: A new target detection methodology that makes novel use of the polarization fork of the target is described and validation against real data shows significant agreement with the expected results based on the theoretical description.
Abstract: The contribution of synthetic aperture radar polarimetry in target detection is described and found to add valuable information. A new target detection methodology that makes novel use of the polarization fork of the target is described. The detector is based on a correlation procedure in the target space, and other target representations (e.g., Huynen parameters or ? angle) can be employed. The mathematical formulation is general and can be applied to any kind of single target; however, in this paper, the detection is optimized for the odd and even bounces (the first two elements of the Pauli scattering vector) and for the oriented dipoles. Validation against real data shows significant agreement with the expected results based on the theoretical description.

69 citations


01 Feb 2010
TL;DR: In this paper, a summary of data obtained with the 350 μm polarimeter, Hertz, at the Caltech Submillimeter Observatory is presented, along with tabulated results and maps showing polarization vectors and intensity contours.
Abstract: We present a summary of data obtained with the 350 μm polarimeter, Hertz, at the Caltech Submillimeter Observatory. We give tabulated results and maps showing polarization vectors and intensity contours. The summary includes over 4300 individual measurements in 56 Galactic sources and two galaxies. Of these measurements, 2153 have P ≥ 3σ_p statistical significance. The median polarization of the entire data set is 1.46%.

66 citations


Journal ArticleDOI
TL;DR: A spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements is described in this article. But the method is not suitable for high-resolution spin- and angle-resolution photoemission spectroscopy (spin-ARPES).
Abstract: We describe a spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements. Spin analysis is obtained through polarimetry based on low-energy exchange scattering from a ferromagnetic thin-film target. This approach can achieve a similar analyzing power (Sherman function) as state-of-the-art Mott scattering polarimeters, but with as much as 100 times improved efficiency due to increased reflectivity. Performance is further enhanced by integrating the polarimeter into a time-of-flight (TOF) based energy analysis scheme with a precise and flexible electrostatic lens system. The parallel acquisition of a range of electron kinetic energies afforded by the TOF approach results in an order of magnitude (or more) increase in efficiency compared to hemispherical analyzers. The lens system additionally features a 90 degrees bandpass filter, which by removing unwanted parts of the photoelectron distribution allows the TOF technique to be performed at low electron drift energy and high energy resolution within a wide range of experimental parameters. The spectrometer is ideally suited for high-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES), and initial results are shown. The TOF approach makes the spectrometer especially ideal for time-resolved spin-ARPES experiments.

64 citations


Journal ArticleDOI
TL;DR: Polarization gratings (PGs) have been recently developed for ultraefficient liquid crystal displays, nonmechanical optical beam steering, and telecommunication devices at optical and near-infrared wavelengths (0.4-2.0 μm).
Abstract: Polarization gratings (PGs) have been recently been developed for ultraefficient liquid crystal displays, nonmechanical optical beam steering, and telecommunication devices at optical and near-infrared wavelengths (0.4–2.0 μm). A PG simultaneously acts as both a spectroscopic and polarimetric disperser for circularly polarized light. With the use of a quarter-wave retarder (or analog) to convert linearly to circularly polarized light, these devices can be used as linear polarimetric analyzers. PGs offer high throughput and high levels of birefringence and can currently be constructed inexpensively to diameters of 150 mm, and development projects are in progress to double that size. In this article we report on the characterization of a PG sample at mid-infrared wavelengths (2–40 μm), including the birefringence, throughput, spectral response, and cold cycling survivability. We discuss these devices in the context of astronomical polarimetry, especially as the polarimetric components for a conceptual study of a SOFIA-based polarimeter.

55 citations



Journal ArticleDOI
TL;DR: A spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements, ideally suited for high-resolution spin- and angle-resolving photoemission spectroscopy (spin-ARPES), and initial results are shown.
Abstract: We describe a spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements. Spin analysis is obtained through polarimetry based on low-energy exchange scattering from a ferromagnetic thin-film target. This approach can achieve a similar analyzing power (Sherman function) as state-of-the-art Mott scattering polarimeters, but with as much as 100 times improved efficiency due to increased reflectivity. Performance is further enhanced by integrating the polarimeter into a time-of-flight (TOF) based energy analysis scheme with a precise and flexible electrostatic lens system. The parallel acquisition of a range of electron kinetic energies afforded by the TOF approach results in an order of magnitude (or more) increase in efficiency compared to hemispherical analyzers. The lens system additionally features a 90{\deg} bandpass filter, which by removing unwanted parts of the photoelectron distribution allows the TOF technique to be performed at low electron drift energy and high energy resolution within a wide range of experimental parameters. The spectrometer is ideally suited for high-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES), and initial results are shown. The TOF approach makes the spectrometer especially ideal for time-resolved spin-ARPES experiments.

Journal ArticleDOI
TL;DR: In this article, a photometric and polarimetric study of 133P/Elst-Pizarro was performed using the FORS1 instrument of the ESO VLT.
Abstract: Context. Photometry and polarimetry have been extensively used as a diagnostic tool for characterizing the activity of comets when they approach the Sun, the surface structure of asteroids, Kuiper-Belt objects, and, more rarely, cometary nuclei. Aims. 133P/Elst-Pizarro is an object that has been described as either an active asteroid or a cometary object in the main asteroid belt. Here we present a photometric and polarimetric study of this object in an attempt to infer additional information about its origin. Methods. With the FORS1 instrument of the ESO VLT, we have performed during the 2007 apparition of 133P/Elst-Pizarro quasisimultaneous photometry and polarimetry of its nucleus at nine epochs in the phase angle range ∼0 ◦ −20 ◦ . For each observing epoch, we also combined all available frames to obtain a deep image of the object, to seek signatures of weak cometary activity. Polarimetric data were analysed by means of a novel physical interference modelling. Results. The object brightness was found to be highly variable over timescales <1 h, a result fully consistent with previous studies. Using the albedo-polarization relationships for asteroids and our photometric results, we found for our target an albedo of about 0.06−0.07 and a mean radius of about 1.6 km. Throughout the observing epochs, our deep imaging of the comet detects a tail and an anti-tail. Their temporal variations are consistent with an activity profile starting around mid May 2007 of minimum duration of four months. Our images show marginal evidence of a coma around the nucleus. The overall light scattering behaviour (photometry and polarimetry) resembles most closely that of F-type asteroids.

Journal ArticleDOI
TL;DR: In this paper, different tree trunks as well as dry timber are analyzed, evaluating the different radar data obtained in each particular case, and observing differences in their electromagnetic properties related to the ground-penetrating radar response.
Abstract: Ground-penetrating radar (GPR) is a geophysical and close-range remote sensing technique based on the use of radar pulses to obtain cross-section images of underground features. This method is characterized by the transmission of an electromagnetic short length pulse (1-2 ns), presenting a centre frequency ranging from 10 MHz to 2.5 GHz. The principles of GPR operation are based on the ability of low frequency radar waves to penetrate into a non-conductive medium, usually subsoil, but also walls, concrete or wood. Those waves are detected after suffering a reflection in electromagnetic discontinuities of the propagation medium. Therefore, this is a suitable method to study changes in those physical properties, and also to characterize different mediums and the reflective targets providing information about their physical properties. The aim of this work is to describe and demonstrate different applications of GPR in forestry, showing the obtained results together with their interpretation. Firstly, in this paper, it is illustrated how GPR is able to map shallow bedrock, subsoil stratigraphy and also to estimate shallow watertable depth. Secondly, different tree trunks as well as dry timber are analyzed, evaluating the different radar data obtained in each particular case, and observing differences in their electromagnetic properties related to the GPR response. Finally, several measurements were taken in order to analyze the use of GPR to detect tree root systems using polarimetric techniques, being possible to detect medium and big size roots, together with groups of small roots.

Journal ArticleDOI
TL;DR: The theoretical operation and experimental demonstration of a Fourier transform imaging spectropolarimeter for real time measurement of the polarization state of light are presented and it is shown that the instrument is compact and robust, and the birefringent interferometer has a high throughput.
Abstract: The theoretical operation and experimental demonstration of a Fourier transform imaging spectropolarimeter for real time measurement of the polarization state of light are presented. The spectropolarimeter uses a Wollaston prism as a birefringent interferometer and two high-order retarders to incorporate channeled polarimetry. Compared with previous instruments, the most significant advantage of the described model is that the complete wavelength-dependent polarization is acquired simultaneously along a one-dimensional spatial image by a single snapshot. Also, we show that, in this configuration, we can benefit from the advantages of the model: it is compact and robust, and the birefringent interferometer has a high throughput.

Journal ArticleDOI
TL;DR: A polarimetric model of the human cornea is presented based on the extended Jones matrix formalism applied to multilayered systems and the Poincaré equivalence theorem is applied to extract optic axis orientation and birefringence.
Abstract: Corneal polarimetry measurement has been the object of several papers. The results of techniques like polarization-sensitive optical coherence tomography (PS-OCT), scanning laser polarimetry, or polarization microscopy are contradictory. Some studies propose a biaxial-like birefringence pattern, while others postulate that birefringence grows at corneal periphery. Several theoretical approaches were proposed for the interpretation of these measurements, but they usually lack accuracy and an adequate consideration of the nonnormal incidence on the tissue. We analyze corneal polarization effects measured by PS-OCT. In vivo and in vitro PS-OCT images of the human cornea are acquired. PS-OCT measurements are apparently not in agreement with the biaxial-like birefringence pattern. We present a polarimetric model of the human cornea based on the extended Jones matrix formalism applied to multilayered systems. We also apply the Poincare equivalence theorem to extract optic axis orientation and birefringence. The results show that for a fibrils orientation pattern composed by alternating circular and radial fibrils, the birefringence is biaxial-like at the corneal center, and there is an almost circularly symmetric high-birefringence area at corneal periphery. The model could be useful for diagnosis of corneal diseases or corneal compensation in retinal polarimetric imaging.

Proceedings ArticleDOI
TL;DR: The Spectropolarimeter for Planetary Exploration (SPEX) as mentioned in this paper is a low-mass spectro-polarimeter designed to operate from an orbiting or in situ platform to simultaneously measure the radiance and the state (degree and angle) of linear polarization.
Abstract: We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.

Journal ArticleDOI
TL;DR: Polarimetry imaging of an 8mm diameter birefringent polystyrene sphere of known anisotropy axis was used to test a dual-projection method by which the anisOTropy axis and its true magnitude can be reconstructed, thus eliminating the confounding effect of anisotropic axis orientation.
Abstract: Recently, we have used polarimetry as a method for assessing the linear retardance of infarcted myocardium. While linear retardance reflects tissue anisotropy, experimental geometry has a confounding effect due to dependence of the linear retardance on the orientation of the sample with respect to the probing beam. Here, polarimetry imaging of an 8mm diameter birefringent polystyrene sphere of known anisotropy axis was used to test a dual-projection method by which the anisotropy axis and its true magnitude can be reconstructed, thus eliminating the confounding effect of anisotropy axis orientation. Feasibility is demonstrated in ex-vivo tissue imaging.

Proceedings ArticleDOI
TL;DR: EPOL as discussed by the authors is the imaging polarimeter part of EPICS (Exoplanet Imaging Camera and Spectrograph) for the 42m E-ELT, which consists of a coronagraph and a dual-beam polarimeter with a liquid-crystal retarder to exchange the polarization of the two beams.
Abstract: EPOL is the imaging polarimeter part of EPICS (Exoplanet Imaging Camera and Spectrograph) for the 42-m E-ELT. It is based on sensitive imaging polarimetry to differentiate between linearly polarized light from exoplanets and unpolarized, scattered starlight and to characterize properties of exoplanet atmospheres and surfaces that cannot be determined from intensity observations alone. EPOL consists of a coronagraph and a dual-beam polarimeter with a liquid-crystal retarder to exchange the polarization of the two beams. The polarimetry thereby increases the contrast between star and exoplanet by 3 to 5 orders of magnitude over what the extreme adaptive optics and the EPOL coronagraph alone can achieve. EPOL operates between 600 and 900 nm, can select more specific wavelength bands with filters and aims at having an integral field unit to obtain linearly polarized spectra of known exoplanets. We present the conceptual design of EPOL along with an analysis of its performance.

Journal ArticleDOI
Ronaldo Bellazzini, Fabio Muleri1
TL;DR: In this paper, the authors report on the performance of an imaging X-ray polarimeter based on photoelectric effect, which derives the polarization information from the track of the photoelectrons imaged by a finely subdivided Gas Pixel Detector.
Abstract: Polarimetry is widely considered a powerful observational technique in X-ray astronomy, useful to enhance our understanding of the emission mechanisms, geometry and magnetic field arrangement of many compact objects. However, the lack of suitable sensitive instrumentation in the X-ray energy band has been the limiting factor for its development in the last three decades. Up to now, polarization measurements have been made exclusively with Bragg diffraction at 45 ∘ or Compton scattering at 90 ∘ and the only unambiguous detection of X-ray polarization has been obtained for one of the brightest object in the X-ray sky, the Crab Nebula. Only recently, with the development of a new class of high sensitivity imaging detectors, the possibility to exploit the photoemission process to measure the photon polarization has become a reality. We will report on the performance of an imaging X-ray polarimeter based on photoelectric effect. The device derives the polarization information from the track of the photoelectrons imaged by a finely subdivided Gas Pixel Detector. It has a great sensitivity even with telescopes of modest area and can perform simultaneously good imaging, moderate spectroscopy and high rate timing. Being truly 2D it is non-dispersive and does not require any rotation. This device is included in the scientific payload of many proposals of satellite mission which have the potential to unveil polarimetry also in X-rays in a few years.

Journal ArticleDOI
TL;DR: In this paper, a detailed multi-wavelength characterization of the Dunn Solar Telescope (DST) at the National Solar Observatory/Sacramento Peak was carried out and various possibilites for the determination of its polarimetric properties.
Abstract: Accurate astrophysical polarimetry requires a proper characterization of the polarization properties of the telescope and instrumentation employed to obtain the observations. Determining the telescope and instrument Muller matrix is becoming increasingly difficult with the increase in aperture size of the new and upcoming solar telescopes. We have carried out a detailed multi-wavelength characterization of the Dunn Solar Telescope (DST) at the National Solar Observatory/Sacramento Peak as a case study and explore various possibilites for the determination of its polarimetric properties. We show that the telescope model proposed in this paper is more suitable than that in previous work in that it describes better the wavelength dependence of aluminum-coated mirrors. We explore the adequacy of the degrees of freedom allowed by the model using a novel mathematical formalism. Finally, we investigate the use of polarimeter calibration data taken at different times of the day to characterize the telescope and find that very valuable information on the telescope properties can be obtained in this manner. The results are also consistent with the entrance window polarizer measurements, opening very interesting possibilities for the calibration of future large-aperture solar telescopes such as the ATST or the EST.

Journal ArticleDOI
TL;DR: Using various multiplexing strategies, it is possible to construct optical polarization interferometers that deliver images of underlying physical parameters such as flow speed, temperature (Doppler effect) or magnetic pitch angle (motional Stark and Zeeman effects).
Abstract: This paper presents an overview of developments in imaging spectro-polarimetry for magnetic fusion diagnostics. Using various multiplexing strategies, it is possible to construct optical polarization interferometers that deliver images of underlying physical parameters such as flow speed, temperature (Doppler effect) or magnetic pitch angle (motional Stark and Zeeman effects). This paper also describes and presents first results for a new spatial heterodyne interferometric system used for both Doppler and polarization spectroscopy.

Journal ArticleDOI
TL;DR: A fast multichannel Stokes/Mueller polarimeter with no mechanically moving parts has been designed to have close to optimal performance from 430-2000 nm by applying a genetic algorithm, as well as simulation results that promise to reduce the measurement noise significantly over previous designs.
Abstract: A fast multichannel Stokes/Mueller polarimeter with no mechanically moving parts has been designed to have close to optimal performance from 430-2000 nm by applying a genetic algorithm. Stokes (Mueller) polarimeters are characterized by their ability to analyze the full Stokes (Mueller) vector (matrix) of the incident light (sample). This ability is characterized by the condition number, κ, which directly influences the measurement noise in polarimetric measurements. Due to the spectral dependence of the retardance in birefringent materials, it is not trivial to design a polarimeter using dispersive components. We present here both a method to do this optimization using a genetic algorithm, as well as simulation results. Our results include fast, broad-band polarimeter designs for spectrographic use, based on 2 and 3 Ferroelectric Liquid Crystals, whose material properties are taken from measured values. The results promise to reduce the measurement noise significantly over previous designs, up to a factor of 4.5 for a Mueller polarimeter, in addition to extending the spectral range.

Journal ArticleDOI
TL;DR: In this article, the polarimetric SAR wave retrieval algorithm was used to validate ocean surface wave measurements without estimating the complex hydrodynamic modulation transfer function, even under large radar incidence angles.
Abstract: C band RADARSAT-2 fully polarimetric (fine quad-polarization mode, HH+VV+HV+VH) synthetic aperture radar (SAR) images are used to validate ocean surface waves measurements using the polarimetric SAR wave retrieval algorithm, without estimating the complex hydrodynamic modulation transfer function, even under large radar incidence angles. The linearly polarized radar backscatter cross sections (RBCS) are first calculated with the copolarization (HH, VV) and cross-polarization (HV, VH) RBCS and the polarization orientation angle. Subsequently, in the azimuth direction, the vertically and linearly polarized RBCS are used to measure the wave slopes. In the range direction, we combine horizontally and vertically polarized RBCS to estimate wave slopes. Taken together, wave slope spectra can be derived using estimated wave slopes in azimuth and range directions. Wave parameters extracted from the resultant wave slope spectra are validated with colocated National Data Buoy Center (NDBC) buoy measurements (wave periods, wavelengths, wave directions, and significant wave heights) and are shown to be in good agreement.

Proceedings ArticleDOI
TL;DR: In this article, a far-infrared polarimeter for the HAWC instrument on SOFIA has been presented, which uses quartz half-wave plates continuously rotating at 0.5 Hz and fixed wire-grid polarizers.
Abstract: We describe our ongoing project to build a far-infrared polarimeter for the HAWC instrument on SOFIA. Far-IR polarimetry reveals unique information about magnetic fields in dusty molecular clouds and is an important tool for understanding star formation and cloud evolution. SOFIA provides flexible access to the infrared as well as good sensitivity to and angular resolution of continuum emission from molecular clouds. We are making progress toward outfitting HAWC, a first-generation SOFIA camera, with a four-band polarimeter covering 50 to 220 microns wavelength. We have chosen a conservative design which uses quartz half-wave plates continuously rotating at ~0.5 Hz, ball bearing suspensions, fixed wire-grid polarizers, and cryogenic motors. Design challenges are to fit the polarimeter into a volume that did not originally envision one, to minimize the heating of the cryogenic optics, and to produce negligible interference in the detector system. Here we describe the performance of the polarimeter measured at cryogenic temperature as well as the basic method we intend for data analysis. We are on track for delivering this instrument early in the operating lifetime of SOFIA.

Journal ArticleDOI
TL;DR: The polarimetric response of a Gas Pixel Detector, combined with position sensitivity, results in a huge increase of sensitivity as discussed by the authors, which can provide additional information procuring two new observable quantities, the degree and the angle of polarization.
Abstract: Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray polarimetry promises to provide additional information procuring two new observable quantities, the degree and the angle of polarization. Polarization from celestial X-ray sources may derive from emission mechanisms themselves such as cyclotron, synchrotron and non-thermal bremsstrahlung, from scattering in aspheric accreting plasmas, such as disks, blobs and columns and from the presence of extreme magnetic field by means of vacuum polarization and birefringence. Matter in strong gravity fields and Quantum Gravity effects can be studied by X-ray polarimetry, too. POLARIX is a mission dedicated to X-ray polarimetry. It exploits the polarimetric response of a Gas Pixel Detector, combined with position sensitivity, that, at the focus of a telescope, results in a huge increase of sensitivity. The heart of the detector is an Application-Specific Integrated Circuit (ASIC) chip with 105,600 pixels each one containing a full complete electronic chain to image the track produced by the photoelectron. Three Gas Pixel Detectors are coupled with three X-ray optics which are the heritage of JET-X mission. A filter wheel hosting calibration sources unpolarized and polarized is dedicated to each detector for periodic on-ground and in-flight calibration. POLARIX will measure time resolved X-ray polarization with an angular resolution of about 20 arcsec in a field of view of 15 × 15 arcmin and with an energy resolution of 20% at 6 keV. The Minimum Detectable Polarization is 12% for a source having a flux of 1 mCrab and 105 s of observing time. The satellite will be placed in an equatorial orbit of 505 km of altitude by a Vega launcher. The telemetry down-link station will be Malindi. The pointing of POLARIX satellite will be gyroless and it will perform a double pointing during the earth occultation of one source, so maximizing the scientific return. POLARIX data are for 75% open to the community while 25% + SVP (Science Verification Phase, 1 month of operation) is dedicated to a core program activity open to the contribution of associated scientists. The planned duration of the mission is one year plus three months of commissioning and SVP, suitable to perform most of the basic science within the reach of this instrument. A nice to have idea is to use the same existing mandrels to build two additional telescopes of iridium with carbon coating plus two more detectors. The effective area in this case would be almost doubled.

Proceedings ArticleDOI
23 May 2010
TL;DR: The ability to accurately measure polarimetric scattering matrices is demonstrated after using direct far-field measurements to compensate for polarization errors on receive and target reflection measurements to compensated for transmit polarization errors.
Abstract: When an active phased array is used for polarimetric radar applications, the system must be calibrated to reflect the fact that polarization of the transmitted and received fields is dependent on the scan angle. This paper discusses the challenges of polarimetric phased array calibration, and demonstrates these techniques using a linear array of eight S-band dual-polarized antennas connected to an active Digital Array Radar (DAR) pro-totype system. The ability to accurately measure polarimetric scattering matrices is demonstrated after using direct far-field measurements to compensate for polarization errors on receive and target reflection measurements to compensate for transmit polarization errors.

Journal ArticleDOI
TL;DR: In this paper, a comprehensive multi-band spectral and polarimetric study of the jet of 3C 264 (NGC 3862) is presented, including three HST optical and ultraviolet polarimetry data sets, along with new and archival Very Large Array radio imaging and polarIMetry, a reanalysis of numerous HST broadband data sets from the near infrared to the far ultraviolet, and a Chandra ACIS-S observation.
Abstract: We present a comprehensive multi-band spectral and polarimetric study of the jet of 3C 264 (NGC 3862). Included in this study are three Hubble Space Telescope (HST) optical and ultraviolet polarimetry data sets, along with new and archival Very Large Array radio imaging and polarimetry, a re-analysis of numerous HST broadband data sets from the near infrared to the far ultraviolet, and a Chandra ACIS-S observation. We investigate similarities and differences between optical and radio polarimetry, in both degree of polarization and projected magnetic field direction. We also examine the broadband spectral energy distribution of both the nucleus and jet of 3C 264, from the radio through the X-rays. From this, we place constraints on the physics of the 3C 264 system, the jet and its dynamics. We find significant curvature of the spectrum from the near-IR to ultraviolet, and synchrotron breaks steeper than 0.5, a situation also encountered in the jet of M87. This likely indicates velocity and/or magnetic field gradients and more efficient particle acceleration localized in the faster/higher magnetic field parts of the flow. The magnetic field structure of the 3C 264 jet is remarkably smooth; however, we do find complex magnetic field structure that is correlated with changes in the optical spectrum. We find that the X-ray emission is due to the synchrotron process; we model the jet spectrum and discuss mechanisms for accelerating particles to the needed energies, together with implications for the orientation of the jet under a possible spine-sheath model.

Proceedings ArticleDOI
TL;DR: The Gemini Planet Imager (GPI) as discussed by the authors is a high contrast adaptive optics instrument intended for direct imaging of extrasolar planets and circumstellar disks using the polarization of disk-scattered starlight.
Abstract: The Gemini Planet Imager (GPI), currently under construction for the 8-m Gemini South telescope, is a high contrast adaptive optics instrument intended for direct imaging of extrasolar planets and circumstellar disks. GPI will study circumstellar disks using the polarization of disk-scattered starlight. These observations will be obtained using a novel 'integral field polarimetry' mode, in which the dispersing prism of GPI's integral field spectrograph is replaced by a Wollaston prism, providing simultaneous dual polarimetry for each position in the field of view. By splitting polarizations only after the instrument's lenslet array, this design minimizes wavefront differences between the polarization channels, providing optimal contrast for circumstellar dust. A rotating achromatic waveplate provides modulation. End-to-end numerical modeling indicates that GPI will be sensitive to scattered light from debris disks significantly fainter than can currently be imaged. We discuss the tradeoffs and design decisions for GPI polarimetry, describe the calibration and reduction procedures, and present the current status of the instrument. First light is planned for 2011.

Journal ArticleDOI
TL;DR: A novel system for the accurate measurement of all polarization related parameters, including polarization mode dispersion and polarization dependent loss, using binary magneto-optic polarization rotators, which achieves unprecedented DGD, SOPMD, and PDL accuracies.
Abstract: We report a novel system for the accurate measurement of all polarization related parameters, including polarization mode dispersion and polarization dependent loss, using binary magneto-optic polarization rotators. By taking advantage of the binary nature of the rotators, we achieved unprecedented DGD, SOPMD, and PDL accuracies of 2.6 fs, 1.39ps2, and 0.06 dB respectively; repeatabilities of 0.022 fs, 0.28 ps2, and 0.034dB respectively; and resolutions of 1 fs, 0.005 ps2 and 0.01dB respectively, from 1480 to 1620 nm.

Journal ArticleDOI
TL;DR: In this paper, a fully polarimetric TF analysis is proposed for radar imaging (SAR, ISAR) that characterises the anisotropic and dispersive behaviour of the polarIMetric response of deterministic targets.
Abstract: Classical radar imaging generally considers targets as set of isotropic independent sources with a constant response in the measured frequency band. Nevertheless, new radar capabilities, in terms of signal bandwidth and angular excursion, may challenge this bright point model. Studies based on multidimensional time-frequency (TF) analysis, describing the angular and frequency behaviour of a scene-s reflectivity, showed that some scatterers may have anisotropic and dispersive responses. Polarisation diversity is an interesting additional source of information in radar imaging, and provides indicators closely linked to some geometric and electromagnetic properties of the observed objects. In this study, a fully polarimetric TF analysis is proposed for radar imaging (SAR, ISAR) that characterises the anisotropic and dispersive behaviour of the polarimetric response of deterministic targets. This method is based on the hyper-image concept, which describes the response of scatterers as a function of the observation angle, the emitted frequency and polarimetric canonical behaviours. Polarimetric hyper-images point out that non-stationary behaviours can be related to physical properties of the target (geometrical shape, relative orientation) and allow a better understanding of the scattering mechanisms. This polarimetric hyper-image representation is then used to detect non-stationary scatterers and to classify their behaviour.