Topic
Polarization-maintaining optical fiber
About: Polarization-maintaining optical fiber is a(n) research topic. Over the lifetime, 24861 publication(s) have been published within this topic receiving 375259 citation(s).
Papers
More filters
Abstract: This paper reports narrowing and splitting of 7-ps-duration pulses from a mode-locked color-center laser by a 700-m-long, single-mode silica-glass fiber, at a wavelength (1.55 \ensuremath{\mu}m) of loss and large but negative group-velocity dispersion. At certain critical power levels, the observed behavior is characteristic of solitons.
1,689 citations
TL;DR: A novel class of highly sensitive sensors based on long-period fiber gratings that can be implemented with simple and inexpensive demodulation schemes are presented.
Abstract: We present a novel class of highly sensitive sensors based on long-period fiber gratings that can be implemented with simple and inexpensive demodulation schemes. Temperature, strain, and refractive-index resolutions of 0.65 °C, 65.75 μ∈, and 7.69 × 10−5, respectively, are demonstrated for gratings fabricated in standard telecommunication fibers.
1,207 citations
TL;DR: It is demonstrated that stimulated Brillouin scattering can be used to generate all-optical slow-light pulse delays of greater than a pulse length for pulses as short as 16 ns in a single-mode fiber, and strongly suggest that analogous delays can be achieved using stimulated Raman scattering at telecommunication data rates.
Abstract: We demonstrate a technique for generating tunable all-optical delays in room temperature single-mode optical fibers at telecommunication wavelengths using the stimulated Brillouin scattering process. This technique makes use of the rapid variation of the refractive index that occurs in the vicinity of the Brillouin gain feature. The wavelength at which the induced delay occurs is broadly tunable by controlling the wavelength of the laser pumping the process, and the magnitude of the delay can be tuned continuously by as much as 25 ns by adjusting the intensity of the pump field. The technique can be applied to pulses as short as 15 ns. This scheme represents an important first step towards implementing slow-light techniques for various applications including buffering in telecommunication systems.
851 citations
Abstract: The transmission of a mode guided by the core of an optical fiber through an ultraviolet-induced fiber grating when substantial coupling to cladding modes occurs is analyzed both experimentally and theoretically. A straightforward theory is presented that is based on the calculation of the modes of a three-layer step-index fiber geometry and on multimode coupled-mode theory that accurately models the measured transmission in gratings that support both counterpropagating (short-period) and co-propagating (long-period) interactions. These cladding-mode resonance filters promise unique applications for spectral filtering and sensing.
848 citations
Book•
01 Dec 2007-
Abstract: 1. Introduction 2. Basic optics 3. The optical fiber 4. Ray analysis of planar optical waveguide 5. Graded index optical fibers 6. Material dispersion 7. Planar waveguides 8. Characteristics of a step-index fiber 9. Graded Index fibers 10. Waveguide dispersion and design considerations 11. Sources for optical fiber communication 12. Detectors for optical fiber and communication 13. Fiber optic communication system design 14. Optical fiber Amplifiers 15. Dispersion compensation and chirping phenomenon 16. Optical solitons 17. Single-mode fiber optic components 18. Single mode optical fiber sensors 19. Measurement methods in optical fiber: I 20. Measurement methods in optical fibers: II 21. Periodic interactions in waveguides 22. Ray equation in Cartesian coordinates 23. Ray paths 24. Leaky modes.
843 citations