scispace - formally typeset
Search or ask a question
Topic

Polarization mode dispersion

About: Polarization mode dispersion is a research topic. Over the lifetime, 5147 publications have been published within this topic receiving 80055 citations. The topic is also known as: PMD.


Papers
More filters
Journal ArticleDOI
01 Jan 2008
TL;DR: In this article, the performance of different electronic equalization and processing schemes for 40 and 10-Gb/s optical transmission over single-mode fiber (SMF) is discussed, from the point of their ability to compensate chromatic dispersion (CD) and polarization mode dispersion(PMD).
Abstract: The performance of different electronic equalization and processing schemes for 40- and 10-Gb/s optical transmission over single-mode fiber (SMF) are discussed, from the point of their ability to compensate chromatic dispersion (CD) and polarization mode dispersion (PMD). In addition, the impact of fiber nonlinearity and modulation format on equalization is also investigated. The main objective of this paper is to present an overview and a comparison of the performances rather than a detailed explanation of the principles of the different equalization schemes. The equalizers which will be covered are analog equalizer (feedforward and decision feedback type), maximum likelihood sequence estimator (MLSE), electronic precompensation, coherent/intradyne detection with digital signal processing (DSP) equalization, DSP-based optical orthogonal frequency division multiplexing (OFDM), and turbo equalization.

170 citations

Journal ArticleDOI
TL;DR: A technique is demonstrated for polarization demultiplexing of arbitrary complex-modulated signals using data in Stokes space to find the best fit plane and the normal to it which contains the origin.
Abstract: A technique is demonstrated for polarization demultiplexing of arbitrary complex-modulated signals. The technique is based entirely on the observation of samples in Stokes space, does not involve demodulation and is modulation format independent. The data in Stokes space is used to find the best fit plane and the normal to it which contains the origin. This normal identifies the two orthogonal polarization states of transmission and the desired polarization alignment transformation matrix. The technique is verified experimentally and is compared with the constant modulus algorithm.

169 citations

Journal ArticleDOI
TL;DR: In this article, the intrinsic and induced birefringence of optical fibers were measured at 1550 nm using the optical frequency-domain reflectometry technique, which confirmed the theoretical analysis, which predicts the appearance of oscillations on the detected Rayleigh backscattering intensity, with periods equal to the polarization beat length.
Abstract: Measurements of intrinsic and induced birefringence of optical fibers are performed at 1550 nm using the optical frequency-domain reflectometry technique. The experiment confirms the theoretical analysis, which predicts the appearance of oscillations on the detected Rayleigh backscattering intensity, with periods equal to the polarization beat length L/sub b/ and to L/sub b//2. Polarization mode-coupling length values are obtained from local birefringence and polarization mode dispersion measurements.

168 citations

Journal ArticleDOI
TL;DR: In this paper, a novel dispersion compensating fiber design consisting of two highly asymmetric concentric cores was proposed, which can have very large negative dispersion values with larger mode field diameter.
Abstract: We propose a novel dispersion compensating fiber design consisting of two highly asymmetric concentric cores. We show that the fundamental mode of the proposed fiber can have very large negative dispersion values [/spl sim/-5100 ps/(nm.km)] with larger mode field diameter (/spl sim/8-9 /spl mu/m) relative to the existing dispersion compensating fibers.

166 citations

Journal ArticleDOI
Virginie Lousse1, Wonjoo Suh1, Onur Kilic1, Sora Kim1, Olav Solgaard1, Shanhui Fan1 
TL;DR: This work analyzes the angular and polarization properties of a photonic crystal slab mirror and shows that such mirror can be designed to reflect one polarization completely, while allowing 100% transmission for the other polarization, thus behaving as a polarization splitter with a complete contrast.
Abstract: It was recently demonstrated that a photonic crystal slab can function as a mirror for externally incident light along a normal direction with near-complete reflectivity over a broad wavelength range. We analyze the angular and polarization properties of such photonic crystal slab mirror, and show such reflectivity occurs over a sizable angular range for both polarizations. We also show that such mirror can be designed to reflect one polarization completely, while allowing 100% transmission for the other polarization, thus behaving as a polarization splitter with a complete contrast. The theoretical analysis is validated by comparing with experimental measurements.

164 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
91% related
Semiconductor laser theory
38.5K papers, 713.7K citations
91% related
Photonics
37.9K papers, 797.9K citations
89% related
Photonic crystal
43.4K papers, 887K citations
87% related
Transmission (telecommunications)
171.3K papers, 1.2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202332
202275
202145
202069
201968
201868