scispace - formally typeset

Topic

Polarization (waves)

About: Polarization (waves) is a(n) research topic. Over the lifetime, 65352 publication(s) have been published within this topic receiving 984723 citation(s). The topic is also known as: polarisation.
Papers
More filters

Book
01 Jan 1977-
Abstract: Preface. 1. The polarization of light waves. 2. Propagation of polarized light through polarizing optical systems. 3. Theory and analysis of measurements in ellipsometer systems. 4. Reflection and transmission of polarized light by stratified planar structures. 5. Instrumentation and techniques of ellipsometry. 6. Applications of ellipsometry. Appendix. Author index. Subject index.

4,614 citations


Book
15 Jan 1995-
Abstract: 1. Introduction 2. Quantum Dynamics in Hilbert Space 3. The Density Operator and Quantum Dynamics in Liouville Space 4. Quantum Electrodynamics, Optical Polarization, and Nonlinear Spectroscopy 5. Nonlinear Response Functions and Optical Susceptibilities 6. The Optical Response Functions of a Multilevel System with Relaxation 7. Semiclassical Simulation of the Optical Response Functions 8. The Cumulant Expansion and the Multimode Brownian Oscillator Model 9. Fluorescence, Spontaneous-Raman and Coherent-Raman Spectroscopy 10. Selective Elimination of Inhomogeneous Broadening Photon Echoes 11. Resonant Gratings, Pump-Probe, and Hole Burning Spectroscopy 12. Wavepacket Dynamics in Liouville Space The Wigner Representation 13. Wavepacket Analysis of Nonimpulsive Measurements 14. Off-Resonance Raman Scattering 15. Polarization Spectroscopy Birefringence and Dichroism 16. Nonlinear Response of Molecular Assemblies The Local-Field Approximation 17. Many Body and Cooperative Effects in the Nonlinear Response

3,897 citations


Journal ArticleDOI
Nanfang Yu1, Federico Capasso2Institutions (2)
01 Feb 2014-Nature Materials
TL;DR: This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam.
Abstract: Metamaterials are artificially fabricated materials that allow for the control of light and acoustic waves in a manner that is not possible in nature. This Review covers the recent developments in the study of so-called metasurfaces, which offer the possibility of controlling light with ultrathin, planar optical components. Conventional optical components such as lenses, waveplates and holograms rely on light propagation over distances much larger than the wavelength to shape wavefronts. In this way substantial changes of the amplitude, phase or polarization of light waves are gradually accumulated along the optical path. This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam. Metasurfaces are generally created by assembling arrays of miniature, anisotropic light scatterers (that is, resonators such as optical antennas). The spacing between antennas and their dimensions are much smaller than the wavelength. As a result the metasurfaces, on account of Huygens principle, are able to mould optical wavefronts into arbitrary shapes with subwavelength resolution by introducing spatial variations in the optical response of the light scatterers. Such gradient metasurfaces go beyond the well-established technology of frequency selective surfaces made of periodic structures and are extending to new spectral regions the functionalities of conventional microwave and millimetre-wave transmit-arrays and reflect-arrays. Metasurfaces can also be created by using ultrathin films of materials with large optical losses. By using the controllable abrupt phase shifts associated with reflection or transmission of light waves at the interface between lossy materials, such metasurfaces operate like optically thin cavities that strongly modify the light spectrum. Technology opportunities in various spectral regions and their potential advantages in replacing existing optical components are discussed.

3,712 citations


Journal ArticleDOI
Kin Fai Mak1, Keliang He2, Jie Shan2, Tony F. Heinz1Institutions (2)
TL;DR: It is demonstrated that optical pumping with circularly polarized light can achieve complete dynamic valley polarization in monolayer MoS(2) (refs 11, 12), a two-dimensional non-centrosymmetric crystal with direct energy gaps at two valleys.
Abstract: Circularly polarized light has been used to confine charge carriers in single-layer molybdenum disulphide entirely to a single energy-band valley, representing full valley polarization.

2,947 citations


Book
01 Sep 2004-
Abstract: Preface 1. Introduction 2. Dispersion principles 3. Unbounded isotropic and anisotropic media 4. Reflection and refraction 5. Oblique incidence 6. Wave scattering 7. Surface and subsurface waves 8. Waves in plates 9. Interface waves 10. Layer on a half space 11. Waves in rods 12. Waves in hollow cylinders 13. Guided waves in multiple layers 14. Source influence 15. Horizontal shear 16. Waves in an anisotropic layer 17. Elastic constant determination 18. Waves in viscoelastic media 19. Stress influence 20. Boundary element methods Bibliography Appendices A. Ultrasonic nondestructive testing principles, analysis and display technology B. Basic formulas and concepts in the theory of elasticity C. Basic formulas in complex variables D. Schlieren imaging and dynamic photoelasticity E. Key wave propagation experiments Index.

2,510 citations


Network Information
Related Topics (5)
Scattering

152.3K papers, 3M citations

94% related
Magnetic field

167.5K papers, 2.3M citations

88% related
Dielectric

169.7K papers, 2.7M citations

87% related
Silicon

196K papers, 3M citations

84% related
Raman spectroscopy

122.6K papers, 2.8M citations

83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202238
20212,037
20202,613
20193,115
20182,778
20172,635