scispace - formally typeset
Search or ask a question
Topic

Polarization (waves)

About: Polarization (waves) is a research topic. Over the lifetime, 65352 publications have been published within this topic receiving 984723 citations. The topic is also known as: polarisation.


Papers
More filters
Journal ArticleDOI
TL;DR: The ability to address coherence, in addition to valley polarization, is a step forward towards achieving quantum manipulation of the valley index necessary for coherent valleytronics.
Abstract: As a consequence of degeneracies arising from crystal symmetries, it is possible for electron states at band-edges ('valleys') to have additional spin-like quantum numbers. An important question is whether coherent manipulation can be performed on such valley pseudospins, analogous to that implemented using true spin, in the quest for quantum technologies. Here, we show that valley coherence can be generated and detected. Because excitons in a single valley emit circularly polarized photons, linear polarization can only be generated through recombination of an exciton in a coherent superposition of the two valley states. Using monolayer semiconductor WSe2 devices, we first establish the circularly polarized optical selection rules for addressing individual valley excitons and trions. We then demonstrate coherence between valley excitons through the observation of linearly polarized luminescence, whose orientation coincides with that of the linearly polarized excitation, for any given polarization angle. In contrast, the corresponding photoluminescence from trions is not observed to be linearly polarized, consistent with the expectation that the emitted photon polarization is entangled with valley pseudospin. The ability to address coherence, in addition to valley polarization, is a step forward towards achieving quantum manipulation of the valley index necessary for coherent valleytronics.

1,322 citations

Journal ArticleDOI
TL;DR: The guided-mode resonance filter represents a basic new optical element with significant potential for practical applications and is presented and explained.
Abstract: The guided-mode resonance properties of planar dielectric waveguide gratings are presented and explained. It is shown that these structures function as filters that produce complete exchange of energy between forward- and backward-propagating diffracted waves with smooth line shapes and arbitrarily narrow filter linewidths. Simple expressions based on rigorous coupled-wave theory and on classical slab waveguide theory give a clear view and quantification of the inherent TE/TM polarization separation and the free spectral ranges of the filters. Furthermore, the resonance regimes, defining the parametric regions of the guided-mode resonances, can be directly visualized. It is shown that the linewidths of the resonances can be controlled by the grating modulation amplitude and by the degree of mode confinement (refractive-index difference at the boundaries). Examples presented of potential uses for these elements include a narrow-line polarized laser, a tunable polarized laser, a photorefractive tunable filter, and an electro-optic switch. The guided-mode resonance filter represents a basic new optical element with significant potential for practical applications.

1,166 citations

Journal ArticleDOI
TL;DR: In this paper, a theory for laser-induced periodic surface structure was developed by associating each Fourier component of induced structure with the corresponding Fourier components of inhomogeneous energy deposition just beneath the surface.
Abstract: We develop a theory for laser-induced periodic surface structure by associating each Fourier component of induced structure with the corresponding Fourier component of inhomogeneous energy deposition just beneath the surface. We assume that surface roughness, confined to a region of height much less than the wavelength of light, is responsible for the symmetry breaking leading to this inhomogeneous deposition; we find strong peaks in this deposition in Fourier space, which leads to predictions of induced fringe patterns with spacing and orientation dependent on the angle of incidence and polarization of the damaging beam. The nature of the generated electromagnetic field structures and their relation to the simple "surface-scattered wave" model for periodic surface damage are discussed. Our calculation, which is for arbitrary angle of incidence and polarization, applies a new approach to the electrodynamics of randomly rough surfaces, introducing a variational principle to deal with the longitudinal fields responsible for local field, or "depolarization," corrections. For a $p$-polarized damaging beam our results depend on shape and filling factors of the surface roughness, but for $s$-polarized light they are essentially independent of these generally unknown parameters; thus an unambiguous comparison of our theory with experiment is possible.

1,144 citations

Journal ArticleDOI
24 Jan 2003-Science
TL;DR: This seismological example shows that diffuse waves produced by distant sources are sufficient to retrieve direct waves between two perfectly located points of observation and has potential applications in other fields.
Abstract: The late seismic coda may contain coherent information about the elastic response of Earth. We computed the correlations of the seismic codas of 101 distant earthquakes recorded at stations that were tens of kilometers apart. By stacking cross-correlation functions of codas, we found a low-frequency coherent part in the diffuse field. The extracted pulses have the polarization characteristics and group velocities expected for Rayleigh and Love waves. The set of cross-correlations has the symmetries of the surface-wave part of the Green tensor. This seismological example shows that diffuse waves produced by distant sources are sufficient to retrieve direct waves between two perfectly located points of observation. Because it relies on general properties of diffuse waves, this result has potential applications in other fields.

1,139 citations


Network Information
Related Topics (5)
Scattering
152.3K papers, 3M citations
94% related
Magnetic field
167.5K papers, 2.3M citations
88% related
Dielectric
169.7K papers, 2.7M citations
87% related
Silicon
196K papers, 3M citations
84% related
Raman spectroscopy
122.6K papers, 2.8M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202238
20212,037
20202,613
20193,115
20182,778
20172,635