scispace - formally typeset
Search or ask a question
Topic

Polyamine binding

About: Polyamine binding is a research topic. Over the lifetime, 188 publications have been published within this topic receiving 9206 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that the apparent unidirectionality in intact cells has arisen from polyamine binding to nucleic acids, thus giving rise to a negligible free intracellular concentration of polyamines.
Abstract: A transport system for polyamines was studied with both intact cells and membrane vesicles of an Escherichia coli polyamine-deficient mutant. Polyamine uptake by intact cells and membrane vesicles was inhibited by various protonophores, and polyamines accumulated in membrane vesicles when D-lactate was added as an energy source or when a membrane potential was imposed artificially by the addition of valinomycin to K+-loaded vesicles. These results show that the uptake was dependent on proton motive force. Transported [14C]putrescine and [14C]spermidine were not excreted by intact cells upon the addition either of carbonyl cyanide m-chlorophenylhydrazone, A23187, and Ca2+ or of an excess amount of nonlabeled polyamine. However, they were excreted by membrane vesicles, although the degree of spermidine efflux was much lower than that of putrescine efflux. These results suggest that the apparent unidirectionality in intact cells has arisen from polyamine binding to nucleic acids, thus giving rise to a negligible free intracellular concentration of polyamines. Polyamine uptake, especially putrescine uptake, was inhibited strongly by monovalent cations. The Mg2+ ion inhibited spermidine and spermine uptake but not putrescine uptake.

64 citations

Patent
31 May 2000
TL;DR: In this article, novel inhibitors of polyamine transport having inhibition constants two orders of magnitude lower than those of known compounds are disclosed, which are useful pharmaceutical agents for treating diseases where it is desired to inhibit polyamine binding proteins, for example cancer and post-angioplasty injury.
Abstract: Novel inhibitors of polyamine transport having inhibition constants two orders of magnitude lower than those of known compounds are disclosed. These polyamine analogues are useful pharmaceutical agents for treating diseases where it is desired to inhibit polyamine transport or other polyamine binding proteins, for example cancer and post-angioplasty injury. Novel chemical synthetic methods to obtain polyamine analogues are disclosed, including the production of a combinational polyamine library. These approaches yield analogues with desirable activities both for diagnostic and research assays and therapy. The assays of the invention are useful for high throughput screening of targets in the discovery of drugs that interact with the polyamine system.

64 citations

Journal ArticleDOI
TL;DR: The crystal structure of maize PAO in the reduced state and in complex with three different inhibitors, guazatine, 1,8-diaminooctane, and N(1)-ethyl-N(11)-[(cycloheptyl)methyl]-4,4-diazaundecane, reveals an exact match between the inhibitors and the PAO catalytic tunnel.
Abstract: Polyamine oxidase (PAO) carries out the FAD-dependent oxidation of the secondary amino groups of spermidine and spermine, a key reaction in the polyamine catabolism. The active site of PAO consists of a 30 A long U-shaped catalytic tunnel, whose innermost part is located in front of the flavin ring. To provide insight into the PAO substrate specificity and amine oxidation mechanism, we have investigated the crystal structure of maize PAO in the reduced state and in complex with three different inhibitors, guazatine, 1,8-diaminooctane, and N(1)-ethyl-N(11)-[(cycloheptyl)methyl]-4,8-diazaundecane (CHENSpm). In the reduced state, the conformation of the isoalloxazine ring and the surrounding residues is identical to that of the oxidized enzyme. Only Lys300 moves away from the flavin to compensate for the change in cofactor protonation occurring upon reduction. The structure of the PAO.inhibitor complexes reveals an exact match between the inhibitors and the PAO catalytic tunnel. Inhibitor binding does not involve any protein conformational change. Such lock-and-key binding occurs also in the complex with CHENSpm, which forms a covalent adduct with the flavin N5 atom. Comparison of the enzyme complexes hints at an "out-of-register" mechanism of inhibition, in which the inhibitor secondary amino groups are not properly aligned with respect to the flavin to allow oxidation. Except for the Glu62-Glu170 pair, no negatively charged residues are involved in the recognition of substrate and inhibitor amino groups, which is in contrast to other polyamine binding proteins. This feature may be exploited in the design of drugs specifically targeting PAO.

61 citations

Journal ArticleDOI
TL;DR: Evidence that polyamines may be involved in learning and memory modulation is provided by the results of this investigation of the effect of an intrahippocampal infusion of spermidine immediately post‐training on the inhibitory avoidance learning paradigm in rats.
Abstract: Polyamines are polycations present at high concentrations in the mammalian brain. We investigated the effect of an intrahippocampal infusion of spermidine, a polyamine agonist, immediately post-training on the inhibitory avoidance learning paradigm in rats. Bilateral intrahippocampal microinjection of spermidine (0.02-20 nmol) caused an increase in test step-down latencies at low concentrations. Administration of arcaine (0.002-0.2 nmol), an antagonist of the N-methyl-D-aspartate (NMDA) receptor polyamine binding site, did not modify the test step-down latencies. In contrast, co-administration of arcaine and spermidine completely reversed the facilitatory effect of spermidine on the test step-down latencies. These results provide evidence that polyamines may be involved in learning and memory modulation.

60 citations

Journal ArticleDOI
TL;DR: The crystal structure of the E. coli PotD protein complexed with spermidine was solved at 1.8 Å resolution and revealed the detailed substrate‐binding mechanism and provided the detailed conformation of the bound sperMidine.
Abstract: The PotD protein from Escherichia coli is one of the components of the polyamine transport system present in the periplasm. This component specifically binds either spermidine or putrescine. The crystal structure of the E. coli PotD protein complexed with spermidine was solved at 1.8 A resolution and revealed the detailed substrate-binding mechanism. The structure provided the detailed conformation of the bound spermidine. Furthermore, a water molecule was clearly identified in the binding site lying between the amino-terminal domain and carboxyl-terminal domain. Through this water molecule, the bound spermidine molecule forms two hydrogen bonds with Thr 35 and Ser 211. Another periplasmic component of polyamine transport, the PotF protein, exhibits 35% sequence identity with the PotD protein, and it binds only putrescine, not spermidine. To understand these different substrate specificities, model building of the PotF protein was performed on the basis of the PotD crystal structure. The hypothetical structure suggests that the side chain of Lys 349 in PotF inhibits spermidine binding because of the repulsive forces between its positive charge and spermidine. On the other hand, putrescine could be accommodated into the binding site without any steric hindrance because its molecular size is much smaller than that of spermidine, and the positively charged amino group is relatively distant from Lys 349.

58 citations

Network Information
Related Topics (5)
Binding site
48.1K papers, 2.5M citations
78% related
Protein subunit
33.2K papers, 1.7M citations
76% related
Protein structure
42.3K papers, 3M citations
74% related
Peptide sequence
84.1K papers, 4.3M citations
73% related
Protein kinase C
38.2K papers, 1.7M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20216
20202
20193
20182
20171
20164