scispace - formally typeset
Search or ask a question
Topic

Polycrystalline silicon

About: Polycrystalline silicon is a research topic. Over the lifetime, 19554 publications have been published within this topic receiving 198222 citations. The topic is also known as: polysilicon & poly-Si.


Papers
More filters
Patent
25 Jun 1982
TL;DR: In this paper, a process for manufacturing bi-polar transistors integrated on silicon is described, in which a layer of polycrystalline silicon is first etched and then doped so as to serve as doping source for P+ extrinsic base regions of the transistor.
Abstract: A process is provided for manufacturing bi-polar transistors integrated on silicon. To form transistors of very small dimensions, a layer of polycrystalline silicon is deposited (after a localized oxidization step) which is etched and which is doped so as to serve as doping source for P+ extrinsic base regions of the transistor. After doping of the P intrinsic base, the oxide and/or nitride is then deposited at low pressure which is implanted with an impurity facilitating dissolution thereof. On the vertical walls of the polycrystalline silicon around the base, the nitride is not dissolved. Elsewhere it is easily dissolved. Advantage is taken of the oxide or nitride thickness which remains to form by diffusion of an N+ emitter region which will not extend laterally as far as the P+ type extrinsic base but which will allow to remain an intrinsic base of very small thickness. The emitter diffusion may take place through a second polycrystalline silicon layer.

56 citations

Journal ArticleDOI
TL;DR: In this paper, the post-release oxide thickness of polycrystalline silicon thin films has been investigated in high vacuum testing and it has been shown that these devices do not fatigue when oxidation and moisture are suppressed.
Abstract: It has been established that microelectromechanical systems created from polycrystalline silicon thin films are subject to cyclic fatigue. Prior work by the authors has suggested that although bulk silicon is not susceptible to fatigue failure in ambient air, fatigue in micron-scale silicon is a result of a “reaction-layer” process, whereby high stresses induce a thickening of the post-release oxide at stress concentrations such as notches, which subsequently undergoing moisture-assisted cracking. However, there exists some controversy regarding the post-release oxide thickness of the samples used in the prior study. In this letter, we present data from devices from a more recent fabrication run that confirm our prior observations. Additionally, new data from tests in high vacuum show that these devices do not fatigue when oxidation and moisture are suppressed. Each of these observations lends credence to the “reaction-layer” mechanism.

56 citations

Patent
10 Jul 1991
TL;DR: In this article, a dynamic random access memory (DRAM) cell with a silicon-germanium alloy layer having a rough surface morphology is utilized for the capacitive surface of the storage-node plate of the cell capacitor.
Abstract: A dynamic random access memory cell in which a silicon-germanium alloy layer having a rough surface morphology is utilized for the capacitive surface of the storage-node plate of the cell capacitor. To create a DRAM array having such cells, a silicon-germanium alloy is deposited, typically via rapid thermal chemical vapor deposition, on top of a single crystalline silicon or polycrystalline silicon storage-node plate layer under conditions which favor three-dimensional growth in the form of macroscopic islanding (i.e., a high concentration of germanium in precursor gases and relatively high deposition temperature). A cell dielectric layer, which exhibits the property of bulk-limited conduction (e.g., silicon nitride), is utilized. Except for the deposition of the silicon-germanium alloy, array processing is conventional.

56 citations

Patent
Norikatsu Takaura1, Hideyuki Matsuoka1, Shinichiro Kimura2, Ryo Nagai1, Satoru Yamada2 
07 Jun 2002
TL;DR: In this paper, the performance of a MISFET formed in the periphery of a DRAM memory cell and constituting a logic circuit is improved by polishing the polycrystalline silicon film.
Abstract: A refresh characteristic of a DRAM memory cell is improved and the performance of a MISFET formed in the periphery thereof and constituting a logic circuit is improved. Each gate electrode in a memory cell area is formed of p type polycrystalline silicon, and a cap insulating film on each gate electrode and a sidewall film on the sidewall thereof are formed of a silicon oxide film. A polycrystalline silicon film formed on the gate electrodes and between the gate electrodes is polished by a CMP method, and thereby contact electrodes are formed. Also, sidewall films each composed of a laminated film of the silicon oxide film and the polycrystalline silicon film are formed on the sidewall of the gate electrodes in the logic circuit area, and these films are used as a mask to form semiconductor areas. As a result, it is possible to reduce the boron penetration and form contact electrodes in a self-alignment manner. In addition, the performance of the MISFET constituting the logic circuit can be improved.

56 citations

Patent
08 Aug 2003
TL;DR: In this paper, a contact structure incorporating an amorphous titanium nitride barrier layer formed via low pressure chemical vapor deposition (LPCVD) utilizing tetrakis-dialkylamido-titanium, Ti(NMe2)4, as the precursor is fabricated by etching a contact opening through an dielectric layer down to a diffusion region to which electrical contact is to be made.
Abstract: A contact structure incorporating an amorphous titanium nitride barrier layer formed via low-pressure chemical vapor deposition (LPCVD) utilizing tetrakis-dialkylamido-titanium, Ti(NMe2)4, as the precursor. The contact structure is fabricated by etching a contact opening through an dielectric layer down to a diffusion region to which electrical contact is to be made. Titanium metal is deposited over the surface of the wafer so that the exposed surface of the diffusion region is completely covered by a layer of the metal. At least a portion of the titanium metal layer is eventually converted to titanium silicide, thus providing an excellent conductive interface at the surface of the diffusion region. A titanium nitride barrier layer is then deposited using the LPCVD process, coating the walls and floor of the contact opening. Chemical vapor deposition of polycrystalline silicon or of a metal follows.

56 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
93% related
Thin film
275.5K papers, 4.5M citations
92% related
Photoluminescence
83.4K papers, 1.8M citations
90% related
Band gap
86.8K papers, 2.2M citations
89% related
Amorphous solid
117K papers, 2.2M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202343
2022130
2021122
2020313
2019498
2018534