scispace - formally typeset
Search or ask a question
Topic

Polycrystalline silicon

About: Polycrystalline silicon is a research topic. Over the lifetime, 19554 publications have been published within this topic receiving 198222 citations. The topic is also known as: polysilicon & poly-Si.


Papers
More filters
Journal ArticleDOI
TL;DR: The first example of a photodiode developed on a micrometre scale sphere made of polycrystalline silicon whose photocurrent shows the Mie modes of a classical spherical resonator is shown, opening the door for developing solar cells and photodetectors that may harvest infrared light more efficiently than silicon photovoltaic devices that are so far developed.
Abstract: Silicon is the material of choice for visible light photodetection and solar cell fabrication. However, due to the intrinsic band gap properties of silicon, most infrared photons are energetically useless. Here, we show the first example of a photodiode developed on a micrometre scale sphere made of polycrystalline silicon whose photocurrent shows the Mie modes of a classical spherical resonator. The long dwell time of resonating photons enhances the photocurrent response, extending it into the infrared region well beyond the absorption edge of bulk silicon. It opens the door for developing solar cells and photodetectors that may harvest infrared light more efficiently than silicon photovoltaic devices that are so far developed.

84 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate on-chip active photonic devices fabricated from deposited polycrystalline silicon, which can be used for monolithic three-dimensional integration of optical networks.
Abstract: We experimentally demonstrate on-chip active photonic devices fabricated from deposited polycrystalline silicon, which can be used for monolithic three-dimensional integration of optical networks. The demonstrated modulator is based on all-optical carrier injection in a micrometer-size resonator and has a modulation depth of 10dB and a temporal response of 135ps. Grain boundaries in the polycrystalline silicon (polysilicon) material result in faster electron-hole recombination, enabling a shortened carrier lifetime and a faster optical switching time compared to similar devices based on crystalline silicon.

84 citations

Journal ArticleDOI
TL;DR: In this paper, the recent progress in the catalytic chemical vapor deposition (Cat-CVD) research project, supported by the New Energy and Industrial Technology Development Organization (NEDO), is reviewed.

84 citations

Patent
15 Dec 1998
TL;DR: In this paper, processes and reactor apparatus for rapidly producing large diameter, high-purity polycrystalline silicon rods for semiconductor applications are described. But they do not specify the number of rods to be produced.
Abstract: Disclosed are processes and reactor apparatus for rapidly producing large diameter, high-purity polycrystalline silicon rods for semiconductor applications. A.C. current, having a fixed or variable high frequency in the range of about 2 kHz to 800 kHz, is provided to concentrate at least 70% of the current in an annular region that is the outer 15% of a growing rod due to the “skin effect.”

83 citations

Journal ArticleDOI
TL;DR: Hydrogenated amorphous silicon (a-Si:H) wire waveguides were fabricated by plasma-enhanced chemical vapor deposition and anisotropic dry etching, indicating that the predominant loss contributor is the waveguide sidewall roughness, similar to the crystalline silicon waveguide.
Abstract: Hydrogenated amorphous silicon (a-Si:H) wire waveguides were fabricated by plasma-enhanced chemical vapor deposition and anisotropic dry etching. With the optimized fabrication process, the propagation losses of as low as 3.2 ± 0.2 dB/cm for the TE mode and 2.3 ± 0.1 dB/cm for the TM mode were measured for the 200 nm (height) × 500 nm (width) wire waveguides at 1550 nm using the standard cutback method. The loss becomes larger at shorter wavelength (~4.4 dB/cm for TE and ~5.0 dB/cm for TM at 1520 nm) and smaller at longer wavelength (~1.9 dB/cm for TE and ~1.4 dB/cm for TM at 1620 nm). With the waveguide width shrinking from 500 nm to 300 nm, the TM mode loss keeps almost unchanged whereas the TE mode loss increases, indicating that the predominant loss contributor is the waveguide sidewall roughness, similar to the crystalline silicon waveguides. Although the a-Si:H and the upper cladding SiO2 were both deposited at 400°C, the propagation loss of the fabricated a-Si:H wire waveguides starts to increase upon furnace annealing under atmosphere at a temperature larger than 300°C: ~13-15 dB/cm after 400°C/30 min annealing and >70 dB/cm after 500°C/30 min annealing, which can be attributed to hydrogen out-diffusion. Even higher temperature (i.e., >600°C) annealing leads to the propagation loss approaching to the polycrystalline silicon counterparts (~40-50 dB/cm) due to onset of a-Si:H solid-phase crystallization.

83 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
93% related
Thin film
275.5K papers, 4.5M citations
92% related
Photoluminescence
83.4K papers, 1.8M citations
90% related
Band gap
86.8K papers, 2.2M citations
89% related
Amorphous solid
117K papers, 2.2M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202343
2022130
2021122
2020313
2019498
2018534