scispace - formally typeset
Search or ask a question

Polymer blend

About: Polymer blend is a research topic. Over the lifetime, 18474 publications have been published within this topic receiving 437183 citations. The topic is also known as: polymer mixture & Polymerblend 或者 Polyblend.

More filters
01 Jan 1986
TL;DR: In this paper, the authors present a model for the behavior of polymers in the Liquid Crystalline State (LCS) and the Amorphous State (ACS).
Abstract: Chain Structure and Configuration. Molecular Weights and Sizes. Concentrated Solutions and Phase Separation Behavior. The Amorphous State. The Crystalline State. Polymers in the Liquid Crystalline State. Glass-Rubber Transition Behavior. Cross-Linked Polymers and Rubber Elasticity. Polymer Viscoelasticity and Rheology. Mechanical Behavior of Polymers. Modern Topics. Index.

2,701 citations

Journal ArticleDOI
TL;DR: In this article, the power conversion efficiency of organic photovoltaic devices based on a conjugated polymer/methanofullerene blend is dramatically affected by molecular morphology.
Abstract: We show that the power conversion efficiency of organic photovoltaic devices based on a conjugated polymer/methanofullerene blend is dramatically affected by molecular morphology. By structuring the blend to be a more intimate mixture that contains less phase segregation of methanofullerenes, and simultaneously increasing the degree of interactions between conjugated polymer chains, we have fabricated a device with a power conversion efficiency of 2.5% under AM1.5 illumination. This is a nearly threefold enhancement over previously reported values for such a device, and it approaches what is needed for the practical use of these devices for harvesting energy from sunlight.

2,591 citations

01 Jan 2007
TL;DR: Theoretical models and simulations of polymers have been used to study the molecular dynamics of different molecular architectures and properties of polymeric networks and gels as discussed by the authors, including the properties of different types of networks.
Abstract: Preface to the Second Edition. -Preface to the First Edition. -STRUCTURE. -Chain Structures. -Names, Acronyms, Classes, and Structures of Some Important Polymers. -THEORY. -The Rotational Isomeric State Model. -Computational Parameters. -Theoretical Models and Simulations of Polymer Chains. -Scaling, Exponents, and Fractal Dimensions. -THERMODYNAMIC PROPERTIES. -Densities, Coefficients of Thermal Expansion, and Compressibilities of Amorphous Polymers. -Thermodynamic Properties of Proteins. -Heat Capacities of Polymers. -Thermal Conductivity. -Thermodynamic Quantities Governing Melting. -The Glass Temperature. -Sub-Tg Transitions. -Polymer-Solvent Interaction Parameter c. -Theta Temperatures. -Solubility Parameters. -Mark-Houwink-Staudinger-Sakurada Constants. -Polymers and Supercritical Fluids. -Thermodynamics of Polymer Blends. -SPECTROSCOPY. -NMR Spectroscopy of Polymers. -Broadband Dielectric Spectroscopy to Study the Molecular Dynamics of Polymers Having Different Molecular Architectures. -Group Frequency Assignments for Major Infrared Bands Observed in Common Synthetic Polymers. -Small Angle Neutron and X-Ray Scattering. -MECHANICAL PROPERTIES. -Mechanical Properties. -Chain Dimensions and Entanglement Spacings. -Temperature Dependences of the Viscoelastic Response of Polymer Systems. -Adhesives. -Some Mechanical Properties of Typical Polymer-Based Composites. -Polymer Networks and Gels. -Force Spectroscopy of Polymers: Beyond Single Chain Mechanics. -REINFORCING PHASES. -Carbon Black. -Properties of Polymers Reinforced with Silica. -Physical Properties of Polymer/Clay Nanocomposites. -Polyhedral Oligomeric Silsesquioxane (POSS). -Carbon Nanotube Polymer Composites: Recent Developments in Mechanical Properties. -Reinforcement Theories. -CRYSTALLINITY AND MORPHOLOGY. -Densities of Amorphous and Crystalline Polymers. -Unit Cell Information on Some Important Polymers. -Crystallization Kinetics of Polymers. -Block Copolymer Melts. -Polymer Liquid Crystals and Their Blends. -The Emergence of a New Macromolecular Architecture: 'The Dendritic State'. -Polyrotaxanes. -Foldamers: Nanoscale Shape Control at the Interface Between Small Molecules and High Polymers. -Recent Advances in Supramolecular Polymers. -ELECTRO-OPTICAL AND MAGNETIC PROPERTIES. -Conducting Polymers: Electrical Conductivity. -Conjugated Polymer Electroluminescence. -Magnetic, Piezoelectric, Pyroelectric, and Ferroelectric Properties of Synthetic and Biological Polymers. -Nonlinear Optical Properties of Polymers. -Refractive Index, Stress-Optical Coefficient, and Optical Configuration Parameter of Polymers. -RESPONSES TO RADIATION, HEAT, AND CHEMICAL AGENTS. -Ultraviolet Radiation and Polymers. -The Effects of Electron Beam and g-Irradiation on Polymeric Materials. -Flammability. -Thermal-Oxidative Stability and Degradation of Polymers. -Synthetic Biodegradable Polymers for Medical Applications. -Biodegradability of Polymers. -Properties of Photoresist Polymers. -Pyrolyzability of Preceramic Polymers. -OTHER PROPERTIES. -Surface and Interfacial Properties. -Acoustic Properties. -Permeability of Polymers to Gases and Vapors. -MISCELLANEOUS. -Definitions. -Units and Conversion Factors. -Subject Index

2,230 citations

Journal ArticleDOI
TL;DR: A review of polymer blends and composites from renewable resources can be found in this article, where the progress of blends from three kinds of polymers from renewable sources (i.e., natural polymers such as starch, protein and cellulose), synthetic polymers, such as polylactic acid and polyhydroxybutyrate, are described with an emphasis on potential applications.

1,931 citations

Network Information
Related Topics (5)
131.4K papers, 2.6M citations
96% related
147.9K papers, 2.7M citations
93% related
71.3K papers, 1.9M citations
91% related
Phase (matter)
115.6K papers, 2.1M citations
88% related
Amorphous solid
117K papers, 2.2M citations
85% related
No. of papers in the topic in previous years